Регулирование однофазного асинхронного двигателя с помощью частотного преобразователя
Содержание:
- Преимущества частотного регулирования привода насосов
- Как выбрать преобразователи частоты.
- Подключение преобразователя частот – пошаговая инструкция
- Принцип действия и схема тиристорного преобразователя для высоковольтных двигателей с фазным ротором.
- Как подключить трехфазный двигатель в сеть 220 В
- Частотный преобразователь для электродвигателя: назначение и функции
- Выбор частотного регулятора для насосов
- Основные направления развития контроллеров и преобразователей частоты Danfoss для СДПМ
- Выбор частотного регулятора для насосов
- Программирование частотных преобразователей на примере VLT FC 302
Преимущества частотного регулирования привода насосов
Комплектование электродвигателей насосных агрегатов частотными преобразователями обеспечивает:
- Плавное включение и остановку насосов, что снижает вероятность гидравлических ударов в системе.
- Упрощение автоматического регулирования с обратной связью по напору, давлению, другим параметрам сети. Аналоговые выходы расходомеров и манометров можно подключать напрямую к частотному преобразователю.
- Защиту насосных агрегатов от “сухого хода” перегрузок. Отключение электродвигателей при перегреве обмоток, обрыве одной или нескольких фаз, скачках напряжения и других авариях.
- Увеличение срока службы сети водоподачи за счет точного поддержания необходимого давления, снижения нагрузки на трубопровод.
- Снижение шума при эксплуатации насосных агрегатов.
- Возможность интеграции в многоуровневые системы автоматизации и телемеханического управления.
Как выбрать преобразователи частоты.
Производители силовой электроники выпускают общепромышленные специализированные преобразователи частоты. Модельные линейки устройств специального назначения включают серии для насосных агрегатов и станций.
Частотные преобразователи такого типа имеют ряд специальных функций. Такие устройства не требуют сложной настройки, программное обеспечение, ПИД или ПИ регуляторы, опции регулирования уже содержит заводской комплект.
Для управления насосом или группой агрегатов можно приспособить общепромышленный преобразователь, однако программирование и настройка таких устройств занимает много времени, а также требует установки специального ПО. Лучше приобрести частотник специального назначения.
Примерный набор специальных функций преобразователей частоты для насосов:
- Групповое управление несколькими агрегатами.
- Режим сброса осевших загрязнений.
- Подавление механического резонанса.
- Предпусковая сушка электродвигателя.
- Защита от «сухого хода», заклинивания вала.
- Режим заполнения трубопровода.
- Пожарный режим (для устройств насосов установок или систем автоматического тушения огня).
- Специальные алгоритмы автоматического регулирования работы насосных агрегатов.
Функции оборудования зависят от модели и назначения устройства. Производители преобразователей выпускают линейки однофазных преобразователей для насосов бытового назначения с простейшим функциональным набором, серии для мощных полностью автоматизированных насосных станций.
Ряд производителей насосов, например, Wilo, Grundfos, POMPE ZANNI и другие поставляют агрегаты с приводом, куда уже встроен преобразователь частоты. Такие устройства не требуют сложной наладки. После простой адаптации к системе, оборудование полностью готово к работе.
Для модернизации электроприводов и при замене двигателей, а также при построении системы автоматизации и управления крупными насосами или станциями, преобразователь частоты подбирают по параметрам.
Устройства для частотно-регулируемого привода выбирают:
По электрическим характеристикам. Номинальное напряжение, ток, количество фаз электродвигателя должны соответствовать аналогичным параметрам устройства частотного регулирования. Мощность преобразователя лучше выбирать с запасом 10-20%. Пуск двигателей насосных агрегатов проходит в легких или средних режимах, большой запас мощности и высокая перегрузочная способность частотного преобразователя в этом случае не нужны.
По типу электродвигателя. В качестве привода насосов применяют асинхронные двигатели с короткозамкнутым и фазным ротором, синхронные двигатели с пусковыми обмотками и постоянными магнитами. Преобразователь должен быть адаптирован для работы с конкретным типом электрической машины.
По диапазону частот. Для циркуляционных низкоскоростных насосов достаточно преобразователя с интервалом регулирования частоты выходного напряжения от 200 до 400 Гц, для глубинных и скважных насосов с высоким напором нужно устройство от 200-800 Гц. Производитель преобразователей обычно указывает диапазон регулировки в об/мин. Это значительно упрощает выбор.
По количеству входов и выходов для датчиков и удаленных устройств управления, поддерживаемым протоколам связи. При выборе частников для проводов, встраиваемых в системы автоматизации, нужно учитывать количество аналоговых, цифровых и релейных выходов и входов для подключения датчиков, ПК пунктов управления и контроля, панелей операторов. Количество управляющих входов и выходов должно превышать число подключаемого оборудования. Это позволит не покупать новый преобразователь при реконструкции или модернизации системы АСУТП. Преобразователь также должен поддерживать протоколы связи, применяемые в автоматизированной системе. Ведущие производители силовой электроники выпускают серии частотных преобразователей с возможностью установки карт поддержки различных протоколов обмена данными.
По классу защиты от пыли и влаги. Исполнение корпуса частотного преобразователя IP должно соответствовать условиям эксплуатации. Устройства IP20-40 размещают в сухих незапыленных помещениях или электротехнических шкафах управления. Преобразователи в корпусе IP54 и IP65 можно устанавливать в местах с высокой влажностью, запыленных помещениях. Допускается размещать устройства рядом с насосом.
Подключение преобразователя частот – пошаговая инструкция
Провести подключение преобразователя частоты можно различными схемами. Все зависит от того, с какой целью рассматриваемый элемент включается в сеть, к примеру, для более легкого старта или регулировки частоты вращения.
Довольно простой схемой подключения частотника можно назвать размещение устройства автоматического выключения перед ним. Подобное устройство должно быть адоптировано для работы с током, величина его должна составлять величину номинального показателя потребляемого тока электродвигателя.
Стоит отметить, что многие модели частотников могут работать с трехфазной сетью, поэтому можно выбрать обычный трехфазный автомат. На момент возникновения короткого замыкания, одна из фаз проводит обесточивание других. Если же преобразователь частоты рассчитан на однофазную сеть, стоит выбрать выключатель, который рассчитан на утроенный ток одной фазы.
Частотники рассчитаны исключительно на прямое включение в сеть.
Дальнейшая работа по подключению заключается в присоединении фазных проводов к определенным клеммам электродвигателя. Также, проводится включение внешнего тормозного резистора в цепь. Кроме этого, в сеть можно включить вольтметр для измерения напряжения в цепи на выходе после преобразователя.
Как правило, современные варианты исполнения частотников имеют подробную инструкцию того, каким образом они должны быть включены в сеть. Подобную информацию стоит учитывать при создании цепи подключения электродвигателя к источнику питания.
Принцип действия и схема тиристорного преобразователя для высоковольтных двигателей с фазным ротором.
Рассмотрим конструкцию тиристорного преобразователя частоты на базе каскадной схемы инвертора тока.
Силовой блок преобразователя состоит из 2 трехфазных управляемых мостов. Один из них подключен к сети через разделительный трансформатор. Второй включен в цепь обмоток ротора электродвигателя.
Такая схема обеспечивает обмен активной и реактивной мощностью между обмотками ротора и сетью электропитания, замедление двигателя в генераторном режиме с отдачей электричества в сеть.
Изменение угловой скорости вала достигается регулировкой частоты тока в цепи обмоток ротора двумя мостами на базе управляемых тиристоров, последовательно включенными между ротором и электросетью.
Изменение скорости возможно только в меньшую сторону, диапазон угловой частоты вала – от 0 до номинального. Частота тока регулируется уменьшением или увеличением углов отпирания и запирания управляемых полупроводниковых элементов. При регулировке роторный мост работает как выпрямитель, сетевой – как инвертор, возвращая активную мощность в сеть. При переводе привода в режим торможения, управляющие сигналы меняют фазу. Ток меняет направление и начинает протекать в цепи обмоток ротора, вызывая рекуперативное торможение. В таком режиме мост, подключенный к сети, работает как выпрямитель, роторный – в режиме инвертора. Рекуперация электроэнергии снижает ее расходы и уменьшает время торможения.
При проектировании привода с каскадными тиристорными преобразователями, следует учесть перегрузочную способность частотника в режиме торможения.
При электродинамическом торможении мост в роторной цепи должен работать с высокой коммутационной устойчивостью. В момент перевода в тормозной режим при высокой частоте вала двигателя ЭДС ротора имеет небольшого значение, угол коммутации тиристоров возрастает особенно при снижении напряжения сети. Коммутационная устойчивость моста снижается. Повысить устойчивость можно только путем ограничения тока ротора, что приводит к увеличению времени торможения и снижению тормозного момента. Таким образом, ограниченную перегрузочную способность при рекуперативном торможении необходимо учитывать при выборе типа частотника для приводов ответственных механизмов.
При работе оборудования с изменяющейся нагрузкой на валу, требуется предусмотреть увеличение напряжения и уменьшение тока цепи сетевого моста. Это предотвратит срыв инвертора и позволит развить динамический момент на валу электродвигателя до 200% от номинального.
Каскадный тиристорный выпрямитель может работать на групповую нагрузку. Для многодвигательных приводов предусмотрено выравнивание тока и момента при старте двигателей и работе после разгона вала до заданной скорости.
Таким образом, тиристорные преобразователи частоты на базе каскадной схемы обеспечивают:
- Управление моментом и скоростью электродвигателя с обратной связью и бездатчиковое регулирование в отношении 1:50 от номинальных величин.
- Экономию электроэнергии путем снижения пусковых токов и рекуперации при торможении в режиме генератора.
- Управление несколькими двигателями.
- Электродинамическое торможение без дополнительного оборудования.
- Изменение частоты вращения вала.
- Работу электродвигателя в режиме короткозамкнутого ротора.
К недостаткам преобразователей относятся ограниченная коммутационная устойчивость мостов в динамическом режиме и при торможении, искажение формы напряжения сети (полная мощность при максимальной скорости в 1,5 раза больше номинальной). Недостатки тиристорных преобразователей устраняются установкой фильтров паразитных гармоник и коррекцией выходной мощности.
Как подключить трехфазный двигатель в сеть 220 В
Использование трёхполюсного АД в однофазной электросети интересует многих владельцев частных домов. Агрегаты пользуются всё большей востребованностью в домашнем хозяйстве. По своей конструкции они довольно просты и отличаются неприхотливостью в эксплуатации. Однако, в плане подключения двигателя к однофазной сети не все так просто.
Пульсирующее поле однофазного тока, не способно привести ротор электродвигателя во вращение – такой ток необходимо преобразовать в многофазный и после этого лишь подавать на агрегат.
На рационализаторские предложения с применением ЛАТр-ов и прочих самодельных конструкций не стоит обращать внимание. Областью запредельной НАНО технологии и научной фантастики не занимаемся, на гонорар за поддержку «нобелевских лауреатов» рассчитывать не приходится
На сегодня известно два толковых способа преобразования однофазного тока в многофазовый – это подключение агрегата через:
- фазосдвигающий конденсатор;
- частотный преобразователь.
Рассмотрим их по очередности.
- Сдвиг фаз при помощи конденсаторов
В трёхфазных цепях создать вращающееся магнитное поле не проблема, при энергетической генерации в обмотках статора наводится ЭДС благодаря вращению намагниченного ротора. Некоторые умудряются прибегать к незамысловатым «хитростям». Применяют различные схемы, для составителей которых, главный вопрос в том, чтобы обеспечить работу электрооборудования без потери мощности. Например, существует метод сдвига фаз в обмотках по отношению друг к другу.
Достаточно подключить конденсатор параллельно одной из обмоток, сначала подобрав номинал устройства таким образом, чтобы обеспечить необходимый сдвиг фаз. Этот вариант неплохой, если следовать старому правилу: чем меньше деталей и они проще, тем надежнее система в целом. Конденсатор, конечно, штука сравнительно копеечная, ставится за минуту, но требует особых навыков. А вот второй метод с преобразователем, хоть и дороговатый, но окупается удобством. Согласитесь, совсем немаловажный фактор.
- Частотники, работающие от однофазной сети
Частота в нашей сети постоянная и равна 50 Гц. Частотник служит для преобразования однофазного переменного тока 50 Гц в трёхфазный, частотой от 1 до 800 Гц. Вся технология процесса сводится к управлению скоростью вращения асинхронного электродвигателя. Подключить ПЧ – это значит, подобрать правильное сечение кабеля, типы проводов, и дополнительное оборудование. Не думайте, что открыв страницу в инструкции, вам сразу станет суть ясной
Вы можете даже не достигнуть результата, подсоединив провода по схеме, если не обратите внимание на некоторые нюансы. На что именно?
Своими руками преобразователь из одной в три фазы.
Так как трёхполюсный движок нужно запитать через ЧП от однофазной сети, то и кабелей нужно два: до частотника двужильный (до 50 м можно использовать лишь неэкранированный кабель, экранированный — до 15 м), от частотника до двигателя – только трехжильный. Одна из жил проводов заземляющая, остальные фазные. Сечение выбирается по техническому паспорту на частотник. Требуемое напряжение в проводах, как раз,получается по току и сопротивлению (согласно сечению) кабеля по знакомой формуле: U = R*I. Расчётные данные следует принимать по ПУЭ.
Частотник советуют покупать с удвоенным запасом, не менее чем на 2 кВ. Его номинальное значение рассчитано лишь на мощность машины, а значит, в лучшем случае он отключится по теплу, в худшем – задымится. Все они собраны по одинаковой схеме, на двух тиристорах управляемых мультивибратором. Схема несложная. Лучше выбрать простой и по мощней. Покупать там, где есть выбор и обязательно с гарантией.
Частотный преобразователь для электродвигателя: назначение и функции
Инверторный преобразователь частоты — электронное устройство для изменения частоты электрического тока и напряжения. Пределы изменений солидные. Частота может меняться от 1 Гц до 500 Гц. И это не максимум, а предел регулировки нормального частотника. Современные частотные инверторы делают на основе электроники, что позволяет точно поддерживать частоту и напряжение. При желании можно создать условия для плавного старта. Все это позволяет применять относительно недорогие электромоторы постоянного тока там, где раньше это было невозможно.
Некоторые частотные преобразователи управляются микропроцессорами
Частотный инвертор с асинхронным электромотором
Асинхронные двигатели при включении потребляют в разы больше энергии чем при штатной работе. Пусковые токи могут быть в 6-8 раз выше рабочих. Такие мгновенные скачки просаживают сеть. Напряжение резко падает, потом также скачкообразно восстанавливается. При включении особо мощного движка, сетевые параметры изменяются настолько сильно, что воспринимаются чувствительной техникой как пропадание. В результате перезапускается компьютерная техника, моргают или совсем гаснут лампы, перегорают блоки питания у котлов отопления и т.д.
Раньше остроту проблемы снижали установкой конденсаторов, которые сглаживали скачки. Но конденсаторы требуются большой емкости — по 70 мкФ на каждый киловатт мощности, плюс такую же емкость необходимо подключать для нейтрализации пускового тока. Но даже в этом случае скачки были, как и перегрузки двигателя на старте. К тому же подключение через емкость «съедало» значительную часть мощности мотора. Для компенсации потери необходимо было покупать более мощные агрегаты, ставить более мощные пусковые конденсаторы. В общем, решение не лучшее, но другого по сути, не было.
Преобразователи частоты выбирают по мощности подключаемого оборудования (должен быть запас не менее 20%) и по току (тоже с запасом)
С появлением преобразователей частоты (ПЧ) проблема решается намного эффективнее. Основная функция этого оборудования — плавный и постепенный разгон двигателя с нуля до полной мощности. На протяжении определенного промежутка времени (может задаваться, а может быть фиксированной величиной), подаваемый на двигатель ток плавно изменяет свои параметры, выводя движок на рабочий режим. Никаких перегрузок, влияния на сети. И конденсаторы не нужны, значит мощность двигателя может быть примерно на 40% меньше чем раньше (именно настолько она снижалась с конденсаторами). Точно так же, постепенно, происходит отключение. Электромотор постепенно замедляется, затем останавливается. В общем, частотный преобразователь для электродвигателя продлевает срок его эксплуатации, убирает проблему пусковых токов, стабилизирует параметры сети.
Что дает применение частотного инвертора с синхронным двигателем
Синхронные электродвигатели постоянного тока имеют несложное устройство, после выхода на требуемую скорость работают стабильно. Недостатки — сложности с пуском и невозможность регулирования частоты вращения вала. Проблему пуска давно научились обходить — делают асинхронную пусковую обмотку, которой разгоняют до нужной частоты. А вот невозможность менять скорость очень сильно ограничивает область применения. Не так много устройств, в которых нет необходимости в разных скоростных режимах работы двигателя. Это вентсистемы, кулеры.
Таблица с несколькими моделями, их параметрами и ценами
Если с синхронным электродвигателем использовать частотный преобразователь, проблема изменения скоростей решается на раз. Причем эта связка работает настолько удачно, что японцы уже выпустили новые электропоезда на такой тяге. Стало появляться и другое подобное оборудование. Причем не только тяговое — новые электроинструменты некоторые производители стали выпускать с такими моторами. Да, стоит такое оборудование дороже, но имеет хороший КПД, работает стабильно.
Выбор частотного регулятора для насосов
Выбор частотных преобразователей для насосного оборудования делается по следующим критериям:
- Типу приводного электродвигателя. Число фаз и тип электродвигателя должны соответствовать параметрам частотного. Для привода насосных агрегатов применяются синхронные и асинхронные одно- или трехфазные электрические машины.
- Интервалу регулируемых частот. Каждому значению частоты питающего напряжения соответствует определенная скорость вращения электродвигателя и производительность насоса. Эта характеристика частотного преобразователя должна отвечать параметрам сети водоподачи.
- Току, напряжению и мощности. Номинальные электрические характеристики электродвигателя и преобразователя частоты должны совпадать. Рекомендуемый запас мощности частника – 15-20%.
- По числу аналоговых и релейных входов. В зависимости от числа датчиков, необходимо подобрать частотный преобразователь с соответствующим количеством входов.
- По функциям. Частотный преобразователь может совмещать функции устройства плавного пуска, ПИД-регулятора, устройств защиты. Функционал устройства выбирают в соответствии с требованиями к системе отопления и водоснабжения.
Использование частотных преобразователей снижает потери давления, оптимизирует потребление воды и электроэнергии, а также снижает вероятность аварий. Их применение дает значительный экономический и технический эффект, особенно заметный на примере крупных систем подачи тепла и водоснабжения.
Основные направления развития контроллеров и преобразователей частоты Danfoss для СДПМ
Синхронные электродвигатели с постоянными магнитами превосходят машины постоянного тока по возможности и точности управления. Они позволяют реализовать множество схем и алгоритмов. Ведущие производители электротехники для приводов, в том числе, компания Danfoss разработали несколько линеек контроллеров и преобразователей частоты для электродвигателей такого типа. Ведутся дальнейшие разработки в следующих направлениях:
- Повышения точности отработки управляющего сигнала. Возможности изменять подсинхронные скорости вращения, определять границы динамических режимов, осуществлять регулирование во всем допустимом диапазоне.
- Снижения энергопотребления. Разрабатываются алгоритмы, оптимизирующие потребляемую СДПМ мощность путем подачи размагничивающих токов.
- Увеличения стабильности момента на малых оборотах путем устранения пульсаций.
- Упрощения алгоритмов управления, что позволит применять более дешевые контроллеры и ПЧ.
- Уменьшения количество датчиков. Безэнкодерный электропривод более надежен, однако, более чувствителен к разбросу характеристик.
- Уменьшения чувствительности привода к помехам. При усилении противо ЭДС на низких оборотах в полеориентированных схемах управления без датчика обратной связи, возрастает чувствительность к помехам.
- Создания контроллеров для использования СДПМ в качестве серводвигателей в сложных динамических системах с высокими требованиями к точности отработки команд.
Компания Danfoss может предложить технические решения управления синхронными двигателями с постоянными магнитами, отвечающими современным требованиям к электроприводу.
Выбор частотного регулятора для насосов
Многие производители насосного оборудования поставляют уже укомплектованные частотными преобразователями. В паспортных данных насосов без регуляторов обычно указывают конкретные модели преобразователей, совместимых с электродвигателями агрегатов. Однако, при отсутствии этой информации, при модернизации и реконструкции насосных станций с двигателями старого образца возникает вопрос выбора частотников. Подбор регулятора осуществляет по следующим характеристикам:
Типу электродвигателя. Количество фаз частотника должен соответствовать типу электродвигателя. При использовании трехфазного электродвигателя в однофазной сети установка частотного регулятора позволяет решить проблему запуска электрической машины без внешнего конденсатора.
Электрическим характеристикам. Напряжение и потребляемый двигателем насоса ток должны совпадать с аналогичными параметрами частотника. Мощность преобразователя должна быть больше мощности привода насосного агрегата на 15-30%
При выборе по этим параметрам следует обратить внимание, что насосные агрегаты одной мощности могут иметь различные номинальные токи. Диапазону регулирования частот
Этот параметр определяет скорость вращения электродвигателя, а значит и производительность насоса. Для грамотного выбора необходимо знать характеристики сети водоподачи и другие параметры. Для циркуляционных насосов систем охлаждения и теплоснабжения обычно достаточно частотника 200–350 Гц, для скважных и глубинных насосов – от 200 до 600 Гц.
Числу аналоговых и цифровых входов и выходов. Количество разъемов преобразователя частоты должно совпадать с числом датчиков, устройств оповещения и других подключаемых устройств. На случай модернизации системы лучше приобрести частотник с большим количеством управляющих входов.
По поддерживаемым протоколам связи. Для корректного обмена данными с автоматизированными устройствами управления или удаленного контроля параметров, требуется частотный преобразователь, поддерживающий используемый в САР протокол (САN, LАN или другие).
Наличию пульта дистанционного управления. Для насосных станций и агрегатов, расположенных в труднодоступных местах, целесообразно подобрать частотный преобразователь с выносной управляющей панелью.
Внимание! При реконструкции насосных станций часто требуется программировать частотники для двигателей, долго бывших в эксплуатации. Для таких электрических машин целесообразно приобрести преобразователи с автоматической адаптацией, так как фактические характеристики этих электродвигателей могу отличаться от паспортных данных
Программирование частотных преобразователей на примере VLT FC 302
Рассмотрим процесс программирования на примере частотного преобразователя VLT FC 302 производства компании «Данфосс». После выполнения всех соединений, проверки их правильности, сброса параметров к заводским настройкам требуется:
- Ввести паспортные данные электродвигателя и активировать функцию автоматической адаптации.
- Включить режим “Hand On”, запустить двигатель и проверить правильность вращения его вала.
- Перейти в пункт регулирования частоты и плавно изменять ее значения. Убедиться, что скорость вращения ротора электрической машины изменяется.
- Установить диапазон скорости электродвигателя с учетом возможностей электрической машины и оборудования, соединенного с ней.
- Задать конфигурацию принципа управления, аналоговых входов частотника для управления по изменению технологических параметров, энкодера и других вспомогательных элементов привода.
- Задать настройки ПИД-регулирования.
- Сохранить настройки в памяти частотника.
При ошибках программирования при попытках включения привода электродвигатель не запускается, на экран дисплея выводится соответствующее сообщение. Оповещение об ошибках выводится также при неправильно произведенных подключениях. В таких случаях необходимо проверить корректность введенных данных и схему электрических соединений.
Внимание! Коды команд, параметров и разделов меню в частотниках разных производителей и моделей могут серьезно отличаться. Для того чтобы правильно установить настройки, необходимо ознакомиться с руководством по программированию
Существуют модели, которые могут сохранять несколько конфигураций. Они не требуют корректировки при изменениях в режимах работы оборудования.
После программирования делается первый запуск привода. При этом проверяется корректность его работы во всех режимах. При необходимости в установленную программу вносят корректировки и осуществляют тестирование еще раз. От грамотного программирования частотника зависит корректная работа двигателя и функционирование промышленного оборудования и технологических установок, общая энергоэффективность электропривода.