Иттербиевый волоконный лазер: устройство, принцип работы, мощность, производство, применение

Как подготовиться к процедуре?

Как и к любой лазерной терапии, воздействие на кожу диодного лазера требует специальной подготовки. Манипуляция не проводится, если менее чем за сутки на обрабатываемой зоне выщипывались или сбривались волоски. Можно сбрить волосы за несколько дней до процедуры, таким образом раздражение уже пройдет.

Лучше всего удаляются те волоски, длина которых не превышает 1 мм. В противном случае лазерный луч может просто не достать до фолликула и тогда эффект эпиляции сведется к нулю.

В день проведения лазерной эпиляции диодным прибором не стоит использовать моющие средства или мыло на кожных покровах, где будет проводиться процедура. Оно может создать своеобразную пленочку, через которую лазеру будет трудно пробиться. Также не стоит увлекаться в этот день декоративной косметикой, использование которой перед лазером может привести к появлению ожогов.

Перед первой лазерной процедурой стоит посетить дерматолога, который оценит состояние кожи и даст свои рекомендации по поводу процедуры. К тому же это позволит определить какие-либо факторы, из-за которых лазерную процедуру придется отложить или отменить.

Применение лазеров

Свойства лазерного излучения уникальны. Это превратило лазеры в незаменимый для самых различных областей науки и техники инструмент. Кроме этого, лазеры широко используются в медицине, в быту, в индустрии развлечений, в сфере транспорта.

Технологические лазеры

  • Благодаря огромной мощности лазеры непрерывного действия активно используются для того, чтобы разрезать, сваривать или спаивать детали, изготовленные из самых различных материалов. При высокой температуре лазерного излучения становится возможным сваривать даже те материалы, которые нельзя соединить между собой другими методами. Например, сваривание металла и керамики для получения нового материала — металлокерамики, обладающего уникальными свойствами.
  • Для того чтобы изготовить микросхемы, используется лазерный луч, который способен сфокусироваться в одну мизерную точку, имеющую диаметр порядка микрона.
  • Еще одно замечательное свойство лазерного луча — его идеальная прямота. Это позволяет использовать его как самую точную линейку в строительстве. Также в строительстве и геодезии при помощи импульсных лазеров производят измерения огромных расстояний на местности, засекая время, за которое световой импульс продвигается от одной точки до другой.

Лазерная связь

Появившиеся лазеры вывели на принципиально новый уровень технику связи и записи информации.

Радиосвязь, развиваясь, постепенно переходила на все более короткие длины волн, поскольку было доказано, что высокие частоты (с наименьшей длиной волны) предоставляют каналу связи наибольшую пропускную способность. Настоящим прорывом стало понимание того, что свет — это такая же электромагнитная волна, просто короче во множество десятков тысяч раз. Следовательно, через лазерный луч возможно передавать объем информации, в десятки тысяч раз превосходящий объем, передаваемый высокочастотными радиоканалами. В результате этого были усовершенствованы различные виды связи по всему миру.

Также при помощи луча лазера записываются и воспроизводятся компакт-диски со звуками — музыкой, и изображениями — фото и фильмами. Индустрия звукозаписи, получив такой инструмент, сделала гигантский шаг вперед.

Применение лазеров в медицине

Лазерные технологии широко применяются как в хирургии, так и в терапевтических целях.

  • Например, благодаря его уникальным возможностям, луч лазера возможно легко ввести сквозь глазной зрачок и «приварить» отслоившуюся сетчатку, исправить в труднодоступной области глазного дна существующие дефекты.
  • В современной хирургии при сложных операциях используется лазерный скальпель, который минимизирует повреждение живых тканей.
  • Лазерное излучение небольшой мощности ускоряет регенерацию поврежденных тканей. Оно также оказывает воздействие, по свойствам похожее на иглоукалывание, практикуемое восточной медициной, — лазерная акупунктура.
  • В косметологии активно используются диодные и пикосекундные лазеры.

ПРинцип работы лазера

Чтобы понять, как работает лазер, посмотрим на его структуру. Типичный лазер выглядит так: трубка, внутри которой размещен твердый кристалл, чаще всего рубин. С обоих торцов она закрыта зеркалами: прозрачным и не полностью прозрачным. Под воздействием электрической обмотки атомы кристалла генерируют световые волны. Эти волны перемещаются от одного зеркала к другому до того момента, пока не наберут интенсивность, достаточную для прохождения через не полностью прозрачное зеркало.

Как создается лазерный луч?

1-я стадия — выключенный лазер.

Электроны всех атомов (на картинке — черные точки на внутренних окружностях) занимают основной энергетический уровень.

2-я стадия — момент после включения.

Под действием энергии из разрядной трубки электроны перемещаются на более высокие энергетические орбиты (на картинке — внешние окружности).

3-я стадия — возникновение луча.

Электроны начинают покидать высокие энергетические орбиты и спускаться к основному уровню. При этом они начинают испускать свет и побуждают к этому остальные электроны. Образуется общий результирующий пучок света с одинаковой длиной волны у каждого источника. Чем больше новых электронов вернется к низким орбитам, тем мощнее свет лазера.

Резкость фокусировки

Длина световой волны в лазерном пучке только одна, следовательно, и цвет также один. Этот свет четко фокусируется линзой почти что полностью в одной точке.

(См. рисунок: слева — свет лазера, справа — естественный свет). Если сравнить свет лазера с естественным светом, то будет видно, что последний не способен иметь настолько резкий фокус. Благодаря концентрации в узком луче огромной энергии лазер способен передать этот луч на гигантские расстояния, избегая рассеяния и ослабления, присущих многоцветному свету — естественному. Эти качества лазера превращают его в незаменимый инструмент для человека.

Физическое обоснование

Разберем вышеописанный механизм работы лазера подробнее. Выясним, какие именно физические законы делают возможным его функционирование.

Активная среда

Для лазерного излучения необходима так называемая активная среда. Только в ней оно может происходить. Как же создается активная среда? Прежде всего, нужно специальное вещество, которое обычно состоит из кристаллов рубина или алюмоиттриевого граната. Собственно, это вещество и есть активная среда. Сформированный из него цилиндр или стержень вставляют в резонатор. Резонатор состоит из двух параллельных друг другу зеркал. Переднее зеркало наполовину прозрачно, а заднее не пропускает свет. Рядом с со стержнем (цилиндром) монтируется импульсная лампа. Цилиндр и импульсная лампа окружены зеркалом. Оно чаще всего изготовлено из кварца, на который нанесен слой металла. При помощи зеркала свет собирается на цилиндре.

Энергетические уровни атомов

Важный момент: состав активной среды таков, что у каждого ее атома есть как минимум три энергетических уровня. В спокойном состоянии атомы активной среды располагаются на низшем энергетическом уровне Е0. Как только включается лампа, атомы поглощают энергию ее света, поднимаются на уровень Е1 и довольно долго пребывают в таким возбужденном состоянии. Именно это и обеспечивает лазерный импульс.

Инверсная заселенность

Инверсная заселенность — фундаментальное физическое понятие. Это такое состояние среды, когда число частиц на каком-то верхнем энергетическом уровне атома (любом из существующих) больше, чем на нижнем. Собственно, активной и называется та среда, в которой уровни являются инверсно заселенными.

Фотоны и световой пучок

Электроны атома не располагаются хаотично. Они занимают определенные орбиты, окружающие ядро. Атом, получающий квант энергии, с огромной вероятностью переходит в состояние возбуждения, характеризующееся сменой орбиты электронами — с самой низкой (метастабильной или основной) на обладающую более высоким уровнем энергии. На такой орбите длительное нахождение электронов невозможно, поэтому происходит их самопроизвольное возвращение к основному уровню. В момент возвращения каждый электрон испускает волну света, называемую фотоном. Одним атомом запускается цепная реакция, и электроны многих других атомов также перемещаются на орбиты с более низкой энергией. Одинаковые световые волны движутся огромным потоком. Изменения этих волн согласованы во времени и в результате формируют общий мощный световой пучок. Этот пучок света и зовется лазерным лучом. Мощность луча у каких-то лазеров настолько огромна, что им можно разрезать камень или металл.

Изготовление лазерного резака

Для начала необходимо извлечь лазерный резак из привода. Эта работа не представляет никакой сложности, но придется набраться терпения и максимум внимания. Так как там содержится большое количество проводов, структура у них одинаковая

При выборе привода важно учитывать наличие пишущего варианта, так как именно в такой модели лазером можно делать записи. Запись производится при испарении тонко нанесенного слоя металла с самого диска

В случае когда лазер работает на чтение, он используется вполсилы, подсвечивая диск.

При демонтаже верхних крепежей, можно обнаружить каретку с расположенным в ней лазером, который способен двигаться в двух направлениях

Ее следует осторожно извлечь путем откручивания, тут присутствует большое количество разъемных устройств и шурупов, которые важно аккуратно снять. Для дальнейшей работы необходим красный диод, при помощи которого осуществляется прожиг. Для его извлечения будет необходим паяльник, а также нужно с аккуратностью убрать крепежи

Важно взять на заметку, что незаменимую деталь для изготовления лазерного резака нельзя встряхивать и ронять, в связи с этим, извлекая лазерный диод, рекомендуется проявлять осторожность

Для его извлечения будет необходим паяльник, а также нужно с аккуратностью убрать крепежи

Важно взять на заметку, что незаменимую деталь для изготовления лазерного резака нельзя встряхивать и ронять, в связи с этим, извлекая лазерный диод, рекомендуется проявлять осторожность

Как будет извлечен главный элемент будущей модели лазера, необходимо все тщательно взвесить и придумать, куда его поместить и как к нему подключить электропитание, так как для диода пишущего лазера необходимо намного больше тока, чем для диода от лазерной указки, и в этом случае можно использовать несколько способов.

Далее заменяется диод в указке. Для создания мощного лазера уз указки должен быть извлечен родной диод, на его место необходимо установить аналогичный из CD/DVD-RW привода. Указка разбирается с соблюдением последовательности.
Она должна быть раскручена и разделена на две части, сверху располагается деталь, которую нужно заменить. Старый диод извлекается и на его место устанавливается требуемый диод, который можно закрепить с помощью клея. Бывают случаи, когда при удалении старого диода могут возникнуть трудности, в этой ситуации можно воспользоваться ножом и немного потрясти указку.

Следующим действием будет изготовление нового корпуса. Чтобы будущий лазер можно было удобно использовать, подключить к нему питание и для придания ему внушительного вида можно применить корпус фонарика. Устанавливается переделанная верхняя часть лазерной указки в фонарик и подводится к нему питание от аккумуляторных батареек, которое подключается к диоду

Важно не перепутать полярность питания. Перед сборкой фонарика стекло и части указки нужно извлечь, так как оно будет плохо проводить прямой ход луча лазера

Последним этапом является подготовка к применению. Перед подключением необходимо проверить прочность закрепления лазера, правильность подключения полярности проводов и ровно ли установлен лазер.

После совершения этих нехитрых действий лазерный резак готов к использованию. Такой лазер можно использовать для прожига бумаги, полиэтилена, для розжига спичек. Область применения может быть обширна, все будет зависеть от фантазии.

Противопоказания к использованию лазеров в хирургии

Только хирург, который будет проводить оперативное вмешательство, может точно определить в зависимости от характера заболевания, есть ли показания и противопоказания к лазерному излучению. Особой подготовки к несложной операции с использованием хирургического лазера нет. Но если у человека есть сопутствующие заболевания могут быть назначены седативные, противоастматические препараты или транквилизаторы.

К прямым противопоказаниям к использованию лазера относят:

  • злокачественные заболевания;
  • опухоли доброкачественного характера, диаметром больше 2 см;
  • лихорадка;
  • нарушения в работе нервной системы;
  • повышенная возбудимость;
  • сахарный диабет;
  • плохая свертываемость крови.

Преимущества и недостатки диодного лазера

Диодный лазер относится к современным приборам, но лучше им пользоваться в салонах и специальных клиниках под четким руководством специалиста. При этом удаление волос прибором имеет свои «+» и «-», с которыми нужно ознакомиться, перед тем как решиться на эпиляцию.

Плюсы удаления волос диодным лазером:

  • активное удаление волос и одновременно омоложение этого участка кожи
  • для полного удаления волос потребуется свыше шести сеансов лазерной терапии
  • после диодного лазера не остается ожогов и покраснений (но подвергать кожу ультрафиолету на протяжении нескольких недель после процедуры не стоит, высока вероятность развития ожогов)
  • по длительности процедура занимает до часа (все зависит от площади обрабатываемого участка тела)
  • активно убирает не только волоски, но и черные точки, которые могут остаться после бриться усов или бороды

Минусов использования диодного лазера при удалении волос значительно меньше. Если эпиляцию проводят женщине, у которой светлые волосы, тогда потребуется большее количество сеансов. К недостаткам можно также отнести высокую стоимость процедуры, но если учесть тот факт, что волосы удаляются навсегда, тогда цена вполне приемлема. Стоимость лазерной эпиляции в Москве составляет от 400 до 30 тыс. рублей.  

Также в зависимости от зоны, которая обрабатывается диодным лазером, человек может ощущать болезненность. К примеру, на лице или в зоне бикини, где кожа тонкая, могут ощущаться легкие покалывания. Менее болезненно проходит лазерная эпиляция ног.

Особенности проведения лазерной эпиляции лица, ног, живота, зоны бикини и других частей тела

Растительность на теле неоднородна, на одних участках волосяная луковица залегает глубоко, на других нет. Также есть зависимость от стадии роста волоса: ранней или зрелой. Эти причины оказывают большое влияние на то, как проходит лазерная эпиляция зоны глубокого бикини или зоны над верхней губой.

Более глубоко волосяные фолликулы залегают на следующих участках:

  • область подмышек;
  • грудь;
  • спина;
  • руки;
  • бёдра и голени;
  • зона бикини.

На этих участках фолликул может залегать на глубине 4 мм, значит, здесь необходим аппарат, работающий на длинных волнах.

Также известно, что при обработке зон бикини и подмышек пациент будет испытывать больше болезненных ощущений, чем при процедуре на ногах, например. Это уже обусловлено тем, что в зоне подмышек и бикини кожа гораздо тоньше, а значит, чувствительнее, чем на спине или ногах.

Важно! Лицо и зона бикини являются зонами, более всего подверженными влиянию гормонов. Это значит, что любой гормональный всплеск в организме может привести к росту волос после процедуры

Проще и легче для косметолога и пациента даётся процедура на участках с неглубоким залеганием фолликула, таких как: лоб, подбородок, зона над верхней губой и щёки. На эти зоны уходит меньше времени, они менее подвержены раздражению и неприятным ощущениям во время процедуры.

Кроме того, данную процедуру можно проводить практически любым типом лазера. Как делают лазерную эпиляцию на более нежных участках, например, в зоне глубокого бикини – чаще всего диодным лазером. Косметологи рекомендуют его из-за предусмотренной системы охлаждения, частично снимающей неприятные ощущения.

Результат остаётся на долгие годы, процедура практически безболезненна и времени занимает немного. Одна процедура на спине – до полутора часов, на животе – до сорока минут. У женщин, имеющих такие же проблемы, время процедуры для зоны живота – 20 минут, около 30 минут на зону крестца и декольте.

Противопоказания

Лазерная эпиляция имеет ограничения, поэтому предварительно рекомендуется проконсультироваться со специалистом. Консультацию можно получить бесплатно в любом косметологическом салоне, где проводится подобная процедура.

Противопоказания к эпиляции волос лазером бывают относительными и абсолютными. К первым относят:

  1. Беременность. Инструкцией к аппарату не запрещается проведение процедуры лазерной эпиляции в период вынашивания ребёнка, однако многие косметологи рекомендуют воздержаться от подобного воздействия на это время.
  2. Период лактации. Также нет абсолютного запрета, однако гормональные изменения во время кормления грудью значительно могут повлиять на результат процедуры, вплоть до его полного отсутствия.
  3. Наличие загара. На такой коже волосяные фолликулы труднее поддаются воздействию, а также возрастает риск неблагоприятных последствий.
  4. Присутствие родинок в зоне предполагаемого воздействия. При попадании под действие лазера они могут начать расти и озлокачествляться.
  5. Острые и хронические болезни эпидермиса – возможно усугубление их течения.
  6. Острые респираторные вирусные заболевания. После лечения можно приступить к выполнению эпиляции лазером.
  7. Травмы кожи в зоне эпиляции.
  8. Доброкачественные образования.
  9. Повышенное артериальное давление.
  10. Предрасположенность к образованию келлоидных рубцов. Вероятность их возникновения зависит от того, насколько правильно проводится процедура.
  11. Варикозное расширение вен.

К абсолютным, полностью исключающим возможность проведения лазерной эпиляции волос, относятся:

  1. Образования злокачественного характера.
  2. Сахарный диабет.
  3. Обострение герпетической инфекции.
  4. Седые или пушковые волосы (в этом случае лазерная эпиляция будет неэффективна).
  5. Свежий сильный загар и смуглый цвет кожи.
  6. Индивидуальная непереносимость, обострение аллергии.
  7. Возраст до 18 лет. У подростков гормональный фон ещё достаточно нестабилен.

Перед процедурой лазерной эпиляции важно исключить все противопоказания – это поможет предотвратить неприятные последствия

Принцип действия

Физической основой работы лазера служит явление вынужденного (индуцированного) излучения. Суть явления состоит в том, что возбуждённый атом способен излучить фотон под действием другого фотона без его поглощения, если энергия последнего равняется разности энергий уровней атома до и после излучения. При этом излучённый фотон когерентен фотону, вызвавшему излучение (является его «точной копией»). Таким образом происходит усиление света. Этим явление отличается от спонтанного излучения, в котором излучаемые фотоны имеют случайные направления распространения, поляризацию и фазу.

Гелий-неоновый лазер. Светящаяся область в центре — это не лазерный луч, а свечение электрического разряда в газе, возникающее подобно тому, как это происходит в неоновых лампах. Собственно лазерный луч проецируется на экран справа в виде красной точки.

Вероятность того, что случайный фотон вызовет индуцированное излучение возбуждённого атома, в точности равняется вероятности поглощения этого фотона атомом, находящимся в невозбуждённом состоянии. Поэтому для усиления света необходимо, чтобы возбуждённых атомов в среде было больше, чем невозбуждённых (так называемая инверсия населённостей). В состоянии термодинамического равновесия это условие не выполняется, поэтому используются различные системы накачки активной среды лазера (оптические, электрические, химические и др.).

Первоисточником генерации является процесс спонтанного излучения, поэтому для обеспечения преемственности поколений фотонов необходимо существование положительной обратной связи, за счёт которой излучённые фотоны вызывают последующие акты индуцированного излучения. Для этого активная среда лазера помещается в оптический резонатор. В простейшем случае он представляет собой два зеркала, одно из которых полупрозрачное — через него луч лазера частично выходит из резонатора. Отражаясь от зеркал, пучок излучения многократно проходит по резонатору, вызывая в нём индуцированные переходы. Излучение может быть как непрерывным, так и импульсным. При этом, используя различные приборы (вращающиеся призмы, ячейки Керра и др.) для быстрого выключения и включения обратной связи и уменьшения тем самым периода импульсов, возможно создать условия для генерации излучения очень большой мощности (так называемые гигантские импульсы). Этот режим работы лазера называют режимом модулированной добротности.

Генерируемое лазером излучение является монохроматическим (одной или дискретного набора длин волн), поскольку вероятность излучения фотона определённой длины волны больше, чем близко расположенной, связанной с уширением спектральной линии, а, соответственно, и вероятность индуцированных переходов на этой частоте тоже имеет максимум. Поэтому постепенно в процессе генерации фотоны данной длины волны будут доминировать над всеми остальными фотонами. Кроме этого, из-за особого расположения зеркал в лазерном луче сохраняются лишь те фотоны, которые распространяются в направлении, параллельном оптической оси резонатора на небольшом расстоянии от неё, остальные фотоны быстро покидают объём резонатора. Таким образом луч лазера имеет очень малый угол расходимости. Наконец, луч лазера имеет строго определённую поляризацию. Для этого в резонатор вводят различные поляризаторы, например, ими могут служить плоские стеклянные пластинки, установленные под углом Брюстера к направлению распространения луча лазера.

Достоинства и недостатки процедуры

Основные преимущества лазерной эпиляции:

  • проблемные зоны очищаются от растительности на годы;
  • удаляются вросшие волосы и чёрные точки (последствия бритья);
  • кожа заметно омолаживается, после того как проходит процедура лазерной эпиляции, остаётся приятной и гладкой на ощупь, нет ощущения шершавости, как после бритья;
  • процедура возможна на малодоступных, не типичных местах (интимные зоны);
  • в сравнении с другими методами борьбы с лишней растительностью лазерная эпиляция – самый безболезненный и безопасный метод.

Недостатки процедуры:

  • не все лазеры годятся для смуглой кожи, светлых волос;
  • повтор процедур, из-за нюансов структуры и роста волос;
  • длительное ожидание между процедурами;
  • длительность самой процедуры (до полутора часов на некоторых участках);
  • высокая цена.

Однако, если пациент поставит специалиста в известность, то возможна анестезия специальным гелем, который замораживает кожный покров, лишая его чувствительности.

Принцип функционирования лазера

Явление, на котором основана работа лазера, называется вынужденным, или индуцированным, излучением среды. Атомы определённого вещества могут испускать фотоны под действием других фотонов, при этом энергия воздействующего фотона должна быть равной разности между энергетическими уровнями атома до излучения и после него.

Излучённый фотон является когерентным тому, который вызвал излучение, т.е. в точности подобен первому фотону. В результате слабый поток света в среде усиливается, причём не хаотично, а в одном заданном направлении. Образуется луч вынужденного излучения, которое и получило название лазера.

Твердотельные лазеры

Рабочее тело Длина волны Источник накачки Применение
Рубиновый лазер 694,3 нм Импульсная лампа Голография, удаление татуировок. Первый представленный тип лазера ().
Алюмо-иттриевые лазеры с легированием неодимом (Nd:YAG) 1,064 мкм, (1,32 мкм) Импульсная лампа, лазерный диод Обработка материалов, лазерные дальномеры, лазерные целеуказатели, хирургия, научные исследования, накачка других лазеров. Один из самых распространённых лазеров высокой мощности. Обычно работает в импульсном режиме (доли наносекунд). Нередко используется в сочетании с удвоителем частоты и соответственным изменением длины волны на 532 нм. Известны конструкции с квазинепрерывным режимом излучения.
Лазер на фториде иттрия-лития с легированием неодимом (Nd:YLF) 1,047 и 1,053 мкм Импульсная лампа, лазерный диод Наиболее часто используются для накачки титан-сапфировых лазеров, используя эффект удвоения частоты в нелинейной оптике.
Лазер на ванадате иттрия (YVO4) с легированием неодимом (Nd:YVO) 1,064 мкм Лазерные диоды Наиболее часто используются для накачки титан-сапфировых лазеров, используя эффект удвоения частоты в нелинейной оптике.
Лазер на неодимовом стекле (Nd:Glass) ~1,062 мкм (Силикатные стёкла), ~1,054 мкм (Фосфатные стёкла) Импульсная лампа, Лазерные диоды Лазеры сверхвысокой мощности (тераватты) и энергии (мегаджоули). Обычно работают в нелинейном режиме утроения частоты до 351 нм в устройствах лазерной плавки. Лазерный термоядерный синтез (ЛТС). Накачка рентгеновских лазеров.
Титан-сапфировый лазер 650—1100 нм Другой лазер Спектроскопия, лазерные дальномеры, научные исследования.
Алюмо-иттриевые лазеры с легированием тулием (Tm:YAG) 2,0 мкм Лазерные диоды Лазерные радары
Алюмо-иттриевые лазеры с легированием иттербием (Yb:YAG) 1,03 мкм Импульсная лампа, Лазерные диоды Обработка материалов, исследование сверхкоротких импульсов, мультифотонная микроскопия, лазерные дальномеры.
Алюмо-иттриевые лазеры с легированием гольмием (Ho:YAG) 2,1 мкм Лазерные диоды Медицина
Церий-легированный литий-стронций (или кальций)-алюмо-фторидный лазер (Ce:LiSAF, Ce:LiCAF) ~280-316 нм Лазер Nd:YAG с учетверением частоты, Эксимерный лазер, лазер на парах ртути. Исследование атмосферы, лазерные дальномеры, научные разработки.
Лазер на александрите с легированием хромом Настраивается в диапазоне от 700 до 820 нм Импульсная лампа, Лазерные диоды. Для непрерывного режима — дуговая ртутная лампа Дерматология, лазерные дальномеры.
Волоконный лазер с легированием эрбием 1,53-1,56 мкм Лазерные диоды Оптические усилители в волоконно-оптических линиях связи, обработка металлов (резка, сварка, гравировка), термораскалывание стекла, медицина, косметология.
Лазеры на фториде кальция, легированном ураном (U:CaF2) 2,5 мкм Импульсная лампа Первый 4-х уровневый твердотельный лазер, второй работающий тип лазера (после рубинового лазера Маймана), охлаждался жидким гелием, сегодня нигде не используется.
Лазеры на халькогенидах цинка/кадмия, легированных переходными металлами (хромом,железом) (TM2+:AIIBVI, Cr2+:ZnSe, Fe2+:ZnSe) Cr2+ 1,9-3,6 мкм, Fe2+ 4-5.5 мкм для Cr2+-легированной активной среды — лазерный диод, эрбиевый или тулиевый волоконные лазеры, для Fe2+-легированной активной среды — Er:YAG лазер (2,94 мкм) Твердотельные лазеры с широкой полосой перестройки, генерация фемтосекундных лазерных импульсов
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector