Электростанция (станция)

Содержание:

Влияние на окружающую среду

Воздействие на атмосферу

При горении топлива потребляется большое количество кислорода, а также происходит выброс значительного количества продуктов сгорания таких как: летучая зола, газообразные окислы углерода, серы и азота, часть которых имеет большую химическую активность, и радиоактивные элементы, содержащиеся в исходном топливе. Также выделяется большое количество тяжёлых металлов, в том числе ртуть и свинец.

Воздействие на литосферу

Для захоронения больших масс золы требуется много места. Данные загрязнения снижаются использованием золы и шлаков в качестве строительных материалов.

Классификация

Большинство электростанций, будь то гидроэлектростанции, тепловые (АЭС, ТЭС и прочие) или ветроэлектростанции, используют для своей работы энергию вращения вала генератора.

В зависимости от источника энергии (в частности, вида топлива)

  • Атомные электростанции (АЭС)

    • Станции реакции деления
    • Станции реакции синтеза (еще не существуют)
  • Электростанции, работающие на органическом топливе (тепловые электростанции (ТЭС) в узком смысле)
    • Газовые электростанции

      • Электростанции на природном газе
      • Электростанции на рудничном, болотном газах, биогазе, лэндфилл газе
    • Жидкотопливные электростанции

      • Электростанции дизельные
      • Электростанции бензиновые
    • Твердотопливные электростанции

      • Угольные электростанции
      • Торфяные электростанции (подсветка факела основного топлива газом или жидким топливом, являющимся также резервным топливом)
  • Гидроэлектрические станции (ГЭС)

    • Русловые гидроэлектростанции
    • Приплотинные гидроэлектростанции
    • Деривационные гидроэлектростанции
    • Гидроаккумулирующие электростанции
    • Приливные электростанции
    • Электростанции на морских течениях
    • Волновые электростанции
    • Осмотические электростанции (электростанция, использующая для выработки электричества явление осмоса)
  • Ветроэлектростанции (ВЭС)
  • Геотермальные электростанции
  • Солнечные электростанции (СЭС)

    • Электростанции на солнечных элементах
    • Гелиостанции (с паровым котлом)
    • Химические электростанции

В зависимости от типа силовой установки

  • Электростанции с тепловой установкой (тепловые электростанции (ТЭС) в широком смысле)
    • Котлотурбинные электростанции

      • Конденсационные электростанции (КЭС, ГРЭС)
      • Теплоэлектроцентрали (ТЭЦ) — теплофикационные электростанции
    • Газотурбинные электростанции
    • Мини-ТЭЦ
    • Газопоршневые электростанции
    • Электростанции дизельные
    • Электростанции бензиновые
    • Электростанции на базе парогазовых установок
    • Комбинированного цикла
  • Электростанции с простым машинным генератором
    • Электростанции с гидротурбиной
    • Электростанции с ветродвигателем
  • Электростанции с магнитогидродинамическим генератором
  • Электростанции на солнечных элементах
  • Электрохимические электростанции (ЭЭС) на основе топливных элементов

Экзотические (редко применяемые)

  • Ветроэлектростанции (ВЭС)
  • Геотермальные электростанции
  • Солнечная энергетика

    Электростанции на солнечных элементах

  • Электростанции на биомассе

    Гелиостанции

  • Электрохимические электростанции (ЭЭС) на основе топливных элементов
  • Электростанции с магнитогидродинамическим генератором
  • Электростанции на рудничном, болотном газах, биогазе, лэндфилл газе
  • Электростанции на морских течениях
  • Волновые электростанции
  • Осмотические электростанции (способные вырабатывать энергию путём смешивания пресной и соленой воды).

Классификация

Большинство электростанций, будь то гидроэлектростанции, тепловые (АЭС, ТЭС и прочие) или ветроэлектростанции, используют для своей работы энергию вращения вала генератора.

В зависимости от источника энергии (в частности, вида топлива)

  • Атомные электростанции (АЭС)

    • Станции реакции деления
    • Станции реакции синтеза (еще не существуют)
  • Электростанции, работающие на органическом топливе (тепловые электростанции (ТЭС) в узком смысле)
    • Газовые электростанции

      • Электростанции на природном газе
      • Электростанции на рудничном, болотном газах, биогазе, лэндфилл газе
    • Жидкотопливные электростанции
      • Электростанции дизельные
      • Электростанции бензиновые
    • Твердотопливные электростанции
      • Угольные электростанции
      • Торфяные электростанции (подсветка факела основного топлива газом или жидким топливом, являющимся также резервным топливом)
  • Гидроэлектрические станции (ГЭС)

    • Русловые гидроэлектростанции
    • Приплотинные гидроэлектростанции
    • Деривационные гидроэлектростанции
    • Гидроаккумулирующие электростанции
    • Приливные электростанции
    • Электростанции на морских течениях
    • Волновые электростанции
    • Осмотические электростанции (электростанция, использующая для выработки электричества явление осмоса)
  • Ветроэлектростанции (ВЭС)
  • Геотермальные электростанции
  • Солнечные электростанции (СЭС)

    • Электростанции на солнечных элементах
    • Гелиостанции (с паровым котлом)
    • Химические электростанции

В зависимости от типа силовой установки

  • Электростанции с тепловой установкой (тепловые электростанции (ТЭС) в широком смысле)
    • Котлотурбинные электростанции
      • Конденсационные электростанции (КЭС, ГРЭС)
      • Теплоэлектроцентрали (ТЭЦ) — теплофикационные электростанции
    • Газотурбинные электростанции
    • Мини-ТЭЦ
    • Газопоршневые электростанции
    • Электростанции дизельные
    • Электростанции бензиновые
    • Электростанции на базе парогазовых установок
    • Комбинированного цикла
  • Электростанции с простым машинным генератором
    • Электростанции с гидротурбиной
    • Электростанции с ветродвигателем
  • Электростанции с магнитогидродинамическим генератором
  • Электростанции на солнечных элементах
  • Электрохимические электростанции (ЭЭС) на основе топливных элементов

Экзотические (редко применяемые)

  • Ветроэлектростанции (ВЭС)
  • Геотермальные электростанции
  • Солнечная энергетика

    Электростанции на солнечных элементах

  • Электростанции на биомассе

    Гелиостанции

  • Электрохимические электростанции (ЭЭС) на основе топливных элементов
  • Электростанции с магнитогидродинамическим генератором
  • Электростанции на рудничном, болотном газах, биогазе, лэндфилл газе
  • Электростанции на морских течениях
  • Волновые электростанции
  • Осмотические электростанции (способные вырабатывать энергию путём смешивания пресной и соленой воды).

Гидроэлектростанции от 100 до 1000 МВт

Название ГЭС Установленная мощность, МВт Годы ввода агрегатов Собственник Река Регион Источники
15 Колымская ГЭС 900 1981—1994 РусГидро р. Колыма Магаданская область
16 Вилюйская ГЭС-I и ГЭС-II 680 1967—1976 Якутскэнерго р. Вилюй Якутия
17 Иркутская ГЭС 662,4 1956—1958 ЕвроСибЭнерго р. Ангара Иркутская область
18 Курейская ГЭС 600 1987—1994 НТЭК р. Курейка Красноярский край
19 Камская ГЭС 552 1954—1958 РусГидро р. Кама Пермский край
20 Нижегородская ГЭС 523 1955—1956 РусГидро р. Волга Нижегородская область
21 Усть-Хантайская ГЭС 491 1970—1972 НТЭК р. Хантайка Красноярский край
22 Новосибирская ГЭС 490 1957—1959 РусГидро р. Обь Новосибирская область
23 Ирганайская ГЭС 400 1998—2001 РусГидро р. Аварское Койсу Дагестан
24 Рыбинская ГЭС 366,4 1941—1950 РусГидро р. Волга и р. Шексна Ярославская область
25 Зарамагская ГЭС-1 346 2020 РусГидро р. Ардон Северная Осетия
26 Майнская ГЭС 321 1984—1985 РусГидро р. Енисей Хакасия
27 Нижне-Бурейская ГЭС 320 2017-2019 РусГидро р. Бурея Амурская область
28 Усть-Среднеканская ГЭС 310,5 2013— РусГидро р. Колыма Магаданская область
29 Зеленчукская ГЭС-ГАЭС 300/160 1999/2016 РусГидро р. Кубань Карачаево-Черкесия
30 Светлинская ГЭС 277,5 2004—2008 АЛРОСА р. Вилюй Якутия
31 Верхнетуломская ГЭС 276 1964—1965 ТГК-1 р. Тулома Мурманская область
32 Миатлинская ГЭС 220 1986 РусГидро р. Сулак Дагестан
33 Цимлянская ГЭС 211,5 1952—1954 ЛУКОЙЛ-Экоэнерго р. Дон Ростовская область
34 Серебрянская ГЭС-1 201 1970 ТГК-1 р. Воронья Мурманская область
35 Кубанская ГЭС-2 184 1967—1969 РусГидро Большой Ставропольский канал Карачаево-Черкесия
36 Кривопорожская ГЭС 180 1990—1991 ТГК-1 р. Кемь Карелия
37 Павловская ГЭС 166,4 1959—1960 Башкирская генерирующая компания р. Уфа Башкирия
38 Верхне-Свирская ГЭС 160 1951—1952 ТГК-1 р. Свирь Ленинградская область
39 Серебрянская ГЭС-2 156 1972 ТГК-1 р. Воронья Мурманская область
40 Нива ГЭС-3 155,5 1949—1950 ТГК-1 р. Нива Мурманская область
41 Княжегубская ГЭС 152 1955—1956 ТГК-1 р. Ковда Мурманская область
42 Верхнетериберская ГЭС 130 1984 ТГК-1 р. Териберка Мурманская область
43 Нарвская ГЭС 125 1955 ТГК-1 р. Нарва Ленинградская область
44 Светогорская ГЭС 122 1945—1947 ТГК-1 р. Вуокса Ленинградская область
45 Угличская ГЭС 120 1940—1941 РусГидро р. Волга Ярославская область
46 Лесогорская ГЭС 118 1937/2013 ТГК-1 р. Вуокса Ленинградская область
47 Гоцатлинская ГЭС 100 2015 РусГидро р. Аварское Койсу Дагестан
  1. В стадии строительства, проектная мощность ГЭС — 570 МВт.
  2. Принята в эксплуатацию с тремя из четырёх генераторов. Проектная мощность станции — 370 МВт. Работает на изолированную от ЕЭС России энергосистему.

С 1989 года заморожено строительство Крапивинской ГЭС планируемой мощностью 300 МВт на р. Томь в Кемеровской области.

Производство электроэнергии

Производство или генерация электроэнергии представляет собой процесс трансформации в электрическую других типов энергии. Сам процесс выполняется электрическими станциями.

Электричество не относится к первичным типам энергии. В этом его главная особенность. Оно не существует в природе в промышленных количествах, поэтому ее необходимо производить. Как правило, электричество производится с помощью специализированных генераторов на промышленных системах – электростанциях.

Основные технологические процессы

Основные этапы электрического производства: 

  • Генерация
  • Передача энергии
  • Распределение
  • Накопление
  • Восстановление

Центральные технологические процессы при производстве электроэнергии. Весь технологический процесс генерации является монолитным и непрерывным. В нем принимают участие разнообразные энергетические системы.

Электрическую энергию генерируют станции разных типов:

  • Конденсационные (КЭС);
  • Теплофикационные (ТЭЦ);
  • С паротурбинными установками (ПТ);
  • С газотурбинными установками (ГТ);
  • С парогазовыми установками (ПГ);
  • С дизельными гидравлическими установками (ГЭС);
  • Гидроэнергетические и гидроаккумулирующие (ГАЭС);
  • Атомные станции (АЭС);
  • Геотермальные станции;
  • Приливные станции;
  • Солнечные станции;
  • Ветровые установки (ветряные мельницы);

Распределение и передача электроэнергии осуществляется предприятиями электрических сетей (ПЭС).

Химико-технологической производство состоит из подготовки сырья, процессов превращения, разделения, перехода и переноса вещества.

На многих нефтехимических производствах для этого использую дистилляторы, абсорберы и ректификаторы. В них происходит движение пара. Но такое производство требует больших затрат из-за сложности и габаритов соответствующего оборудования. 

Виды электростанций

Виды электростанций разделяются по типам перерабатываемой энергии и топлива.

Атомные электростанции (АЭС)

Основным топливом на атомных стациях, как правило, служит уран. Энергия на них генерируется путем целенаправленного создания маленьких ядерных реакций. Они происходят в главном блоке всей станции – в атомном реакторе. Производство очень затратное и используется только финансовыми гигантами или государством.

Тепловые электростанции (ТЭС), использующие органическое топливо

Принцип работы таких станций довольно прост. Нагретая вода образует пар, поступающий в паровую турбину. Внутри турбины пар начинает вращать ее лопасти. Лопасти, в свою очередь, связаны с ротором генератора. Энергия пара, таким образом, становится механической. Подобный способ менее затратный и более популярный среди частных производителей. Подобные станции могут быть локальными. Они более доступны к установке, чем АЭС.

Гидроэлектрические станции (ГЭС)

Система ГЭС работает еще проще. Вода напрямую поступает в лопасти турбины и запускает ротор генератора электричества. Подобные станции выгоднее размещать у водохранилища или дополнительно монтировать водонапорную вышку. Подобный способ получения энергии из-за своей простоты популярен среди крупных компаний и частных производителей.

Ветроэлектростанции (ВЭС)

Кинетическая энергия ветра запускает движение ветровых установок и, поступая в лопасти турбин, запускает работу электрического генератора. Этот способ непопулярен среди частных производителей, из-за особенности погодных условий в некоторых регионах и дороговизны современных ветровых установок.

Геотермальные электростанции

Данный вид электростанции получает энергию от тепла Земли с использованием подземных скважин. Тепло из них поступает в генератор в виде горячей воды или пара. Это не самый рентабельный способ получения энергии для частных производителей. Для таких станций требуются геотермальные источники с высоким температурным коэффициентом и специальные тепловые циклы. Затраты на такое сооружение очень большие.

Солнечные электростанции (СЭС)

Такие электростанции при помощи зеркал получают сконцентрированную энергию солнца. Солнечные лучи попадают на приемники, которые нагреваются и образуют тепловую энергию. Единственный минус таких станций — непостоянство источника энергии. Но, как правило, запасов хватает на бесперебойную работу. А солнечные генераторы довольно бюджетные, легки в эксплуатации, транспортировке.

Классификация

Гидроэлектрические станции разделяются в зависимости от вырабатываемой мощности:

  • мощные — вырабатывают от 25 МВт и выше;
  • средние — до 25 МВт;
  • малые гидроэлектростанции — до 5 МВт.

Мощность ГЭС зависит от напора и расхода воды, а также от КПД используемых турбин и генераторов. Из-за того, что по природным законам уровень воды постоянно меняется, в зависимости от сезона, а также ещё по ряду причин, в качестве выражения мощности гидроэлектрической станции принято брать цикличную мощность. К примеру, различают годичный, месячный, недельный или суточный циклы работы гидроэлектростанции.

Типичная для горных районов Китая малая ГЭС (ГЭС Хоуцзыбао, уезд Синшань округа Ичан, пров. Хубэй). Вода поступает с горы по чёрному трубопроводу

Гидроэлектростанции также делятся в зависимости от максимального использования напора воды:

  • высоконапорные — более 60 м;
  • средненапорные — от 25 м;
  • низконапорные — от 3 до 25 м.

В зависимости от напора воды, в гидроэлектростанциях применяются различные виды турбин. Для высоконапорных — ковшовые и радиально-осевые турбины с металлическими спиральными камерами. На средненапорных ГЭС устанавливаются поворотнолопастные и радиально-осевые турбины, на низконапорных — поворотнолопастные турбины в железобетонных камерах.

Принцип работы всех видов турбин схож — поток воды поступает на лопасти турбины, которые начинают вращаться. Механическая энергия, таким образом, передаётся на гидрогенератор, который и вырабатывает электроэнергию. Турбины отличаются некоторыми техническими характеристиками, а также камерами — стальными или железобетонными, и рассчитаны на различный напор воды.

Гидроэлектрические станции также разделяются в зависимости от принципа использования природных ресурсов, и, соответственно, образующегося напора воды. Здесь можно выделить следующие ГЭС:

  • плотинные ГЭС. Это наиболее распространённые виды гидроэлектрических станций. Напор воды в них создаётся посредством установки плотины, полностью перегораживающей реку, или поднимающей уровень воды в ней на необходимую отметку. Такие гидроэлектростанции строят на многоводных равнинных реках, а также на горных реках, в местах, где русло реки более узкое, сжатое.
  • приплотинные ГЭС. Строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.
  • деривационные ГЭС. Такие электростанции строят в тех местах, где велик уклон реки. Необходимый напор воды в ГЭС такого типа создаётся посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние — спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида — безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создаётся более высокая плотина, и создаётся водохранилище — такая схема ещё называется смешанной деривацией, так как используются оба метода создания необходимого напора воды.
  • гидроаккумулирующие электростанции. Такие ГАЭС способны аккумулировать вырабатываемую электроэнергию и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций, следующий: в определённые периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

В состав гидроэлектрических станций, в зависимости от их назначения, также могут входить дополнительные сооружения, такие как шлюзы или судоподъёмники, способствующие навигации по водоёму, рыбопропускные, водозаборные сооружения, используемые для ирригации, и многое другое.

Ценность гидроэлектрической станции состоит в том, что для производства электрической энергии они используют возобновляемые природные ресурсы. В виду того, что потребности в дополнительном топливе для ГЭС нет, конечная стоимость получаемой электроэнергии значительно ниже, чем при использовании других видов электростанций.

Электроэнергетика

Основная статья: Электроэнергетика России

Крупнейшая в России тепловая электростанция — Сургутская ГРЭС-2 обеспечивает электроэнергией важнейший для России нефтегазовый промысел в Западной Сибири, сжигает ценное нефтехимическое сырьё и автомобильное топливо — Нефтяной газ

Значение электроэнергетики в экономике России, так же как и её общественной жизни трудно переоценить — это основа всей современной жизни.

По важному показателю — выработке на одного жителя — в 2005 году страна находилась приблизительно на одном уровне с такими энергоимпортирующими государствами как Германия и Дания, имеющими меньшие транспортные потери и затраты на отопление. Однако после спада в 90-х с 1998 года потребление постоянно растёт, в частности в 2007 году выработка всеми станциями единой энергосистемы составила 997,3 млрд кВт·ч (1 082 млрд кВт·ч в 1990 году).. Производство электроэнергии в 2017 году составило 1,091 трлн кВт·ч, что на 0,1% выше уровня 2016 года

Производство электроэнергии в 2017 году составило 1,091 трлн кВт·ч, что на 0,1% выше уровня 2016 года.

АЭС за этот период нарастили производство на 3,3%, до 203 млрд кВт·ч. Тепловые станции снизили производство на 0,8% — до 700 млрд кВт·ч. Гидроэлектростанции увеличили выработку на 0,3%, до 187 млрд кВт·ч.

В структуре потребления выделяется промышленность — 36 %, ТЭК — 18 %, жилой сектор — 15 % (несколько заместивший в 90-х провал потребления в промышленности), значительны потери в сетях, достигающие 11,5 %. По регионам структура резко отличается — от высокой доли ТЭК в западной Сибири и энергоёмкой промышленности в Сибирской системе, до высокой доли жилого сектора в густонаселённых регионах европейской части.

Магистральная ЛЭП 500 кВ Волжская ГЭС — Москва

В 2003 году начат процесс реформирования «ЕЭС России». Основными вехами реформирования электроэнергетики стали завершение формирования новых субъектов рынка, переход к новым правилам функционирования оптового и розничных рынков электроэнергии, принятие решения об ускорении темпов либерализации, размещение на фондовом рынке акций генерирующих компаний. Осуществлена государственная регистрация семи оптовых генерирующих компаний (ОГК) и 14 территориальных генерирующих компаний (ТГК). В отдельную Федеральную сетевую компанию (ФСК ЕЭС), контролируемую государством, выделена основная часть магистральных и распределительных сетей.

Железнодорожный транспорт — крупный и особенно важный для хозяйства страны потребитель энергии

Кроме того действуют и более независимые или изолированные энергокомпании «Янтарьэнерго», «Якутскэнерго», «Дальневосточная энергетическая компания», «Татэнерго», «Башкирэнерго», «Иркутскэнерго» и «Новосибирскэнерго».

В 2008 году владельцем акций межрегиональных сетевых компаний по распределению энергетических ресурсов стал «Холдинг МРСК».

Крупными игроками российской электроэнергетики с конца 2007 года стали германская компания E.ON, теперь контролирующая один из крупнейших энергоактивов — ОГК-4, итальянская ENEL теперь ключевой акционер ОГК-5. С 2008 года финский концерн Fortum контролирует бывшую ТГК-10.

Техническое развитие классической электроэнергетики России связывается введением в энергосистему более эффективных и маневренных парогазовых установок в том числе и в составе теплоцентралей.

Государственная политика

В 2009 году в России вступил в силу федеральный закон «Об энергосбережении и повышении энергетической эффективности в Российской Федерации», целью которого является стимулирование энергосбережения и повышения энерго-эффективности.

Реализация и концепции построения АСУ ТП ТЭС

Одна из основных задач управления технологическим процессом на ТЭС состоит в поддержании непрерывною соответствия между количествами вырабатываемой и потребляемой энергии. Решение этой задачи может осуществляться по частям с помощью автономных АСР парового котла, турбины и электрического генератора.

Состав функций АСУ ТП

  1. Информационные функции АСУ ТП по энергоблокам:
    • Оперативный контроль
    • Технологическая сигнализация
    • Расчет технико-экономических показателей
    • Определение достоверности информации
    • Диагностика состояния оборудования
    • Регистрация аварийных положений
    • Формирование банков данных
  2. Функции управления АСУ ТП по энергоблоку
    • Статическая оптимизация режимов работы энергооборудования
    • Исследование объекта управления
    • Имитация экстремальных условий
  3. Информационные функции АСУ ТП по ТЭС
    • Общестанционный контроль
    • Расчет общестанционных ТЭП
    • Контроль достоверности информации
    • Регистрация общестанционных аварий
    • Обмен оперативно-диспетчерской информацией с АСУ вышестоящих и нижестоящих уровней
    • Формирование развитых баз данных
  4. Функции управления АСУ ТП по ТЭС
    • Оптимальное распределение электрических нагрузок между энергоблоками
    • Оптимальное распределение экологических нагрузок между энергоблоками
    • Выбор состава работающего оборудования энергоблоков
    • Дискретное и непрерывно-дискретное управление вспомогательным оборудованием
    • Выполнение логических операций по переключениям в главной электрической схеме станции
    • Групповое управление автоматическими системами регулирования возбуждения электрических генераторов

Организация управления технологическим процессом ТЭС

Для осуществления управления технологического процесса ТЭЦ необходимо учитывать изменение производительности первоисточников энергии и их состоянием в зависимости от электрической нагрузки.

Основными факторами, влияющими на организацию управления ТП ТЭС являются:

  • организационная структура оперативно-диспетчерского управления;
  • комплекс технических средств автоматизации;
  • эргономика рабочего места оператора;
  • композиционное решение оперативно-диспетчерских постов управления;
  • существующий уровень автоматизации.

Функционально-групповое управление (ФГУ).

Осуществляется путем декомпозиции и агрегирования, для разделения энергоблока на отдельные элементы или участки для децентрализованного управления ими. В результате ФГУ повышается надежность и точность автоматизированной системы управления энергоблока в целом. Деление на функциональные группы условное, однако оно облегчает работу оперативно-обслуживающего персонала.

Примеры перечня ФГ для мощного моноблока с прямоточным котлом и конденсационной турбины:

по котлу:

  • питания водой,
  • полами твердого пылевидного топлива,
  • подачи жидкого (газообразного) топлива,
  • подачи и подогрева воздуха,
  • розжига растопочных горелок,
  • удаления и очистки дымовых газов,
  • подавления вредных выбросов,
  • пароперегреватели;

по генератору:

  • система охлаждения,
  • система возбуждения,
  • система синхронизации;

по турбине и вспомогательному оборудованию:

система снабжения смазочным маслом

  • система снабжения регулирующей жидкостью (аккумуляторный бак, центральный насос, устройства распределения и т.п.)
  • система снабжения паром для прогрева соединительных трубопроводов в пределах турбины,
  • система снабжении турбины перегретым паром (ГПЗ, паровые байпасы, стопорный и регулирующий клапаны, АСР частоты вращения и т.п.),
  • вакуумно-уплотнительные устройства (пусковой и рабочий -эжекторы, система лабиринтовых уплотнений и т.п.),
  • охладительная установка (конденсатор, циркуляционные насосы и т.п.),
  • конденсатные насосы,
  • блочная обессоливающая установка,
  • питательно-деаэраторная установка,
  • подогреватели среднего давления,
  • подогреватели высокого давления.

Экономическая эффективность от автоматизации теплового оборудования ТЭС

Все нововведения полезны, если они экономически выгодны, поэтому введение автоматизации на ТЭС следует производить учитывая экономическую эффективность.

Автоматизация в результате экономит следующие аспекты затрат на ТЭС:

  • Изменение (прирост) КПД установки
  • Изменение (прирост) выработки электроэнергии
  • Изменение (уменьшение) расхода тепловой и электрической энергии на собственные нужды.

Особенности возведения и эксплуатации

Выбор определенной модификации ГЭС определяется особенностями местности и расчетной эффективностью речного потока. Общая схема всех видов в обязательном порядке включает сорозаборные решетки на входных отверстиях, центр управления и контроля, площадку для обслуживания электрооборудования и трансформаторы, преобразующие вырабатываемое электричество в 220 V или другой необходимый стандарт напряжения.

Для сооружения генератора ГЭС используют распространенные унифицированные элементы. Все оборудование износостойкое, обладает большим сроком эксплуатации и минимальными требованиями к обслуживанию. Но в целом устройство каждой станции уникально. Конструкцию, привязанную к конкретному географическому району, нельзя повторить, как нельзя найти и две идентичные по условиям бассейна реки.

Разобравшись, как работает гидроэлектростанция, можно сформулировать ее преимущества относительно ТЭС и АЭС:

  • вода — возобновляемый и чистый источник энергии;
  • высокий КПД;
  • отсутствие расходов на топливо;
  • снижение затрат на обслуживание и персонал;
  • низкий уровень риска аварий.

Причина, по которой выработка электроэнергии ГЭС составляет лишь около 20% от мирового производства электричества, заключается в необратимом влиянии на экосистему по всему руслу реки и ирригацию прилегающих территорий. Размеры всего гидроузла, включая водохранилище, достигают сотен тысяч га. До сих пор не существует надежных методов комплексной оценки масштабов такого влияния.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector