Генератор частот
Содержание:
- Схемы генераторов световых и звуковых импульсов
- Бескорпусный генератор сигналов различной формы UDB1008S
- Как сделать генератор повышенной нагрузки?
- Модель прямоугольных импульсов с регулятором
- Схема прибора
- Модели с кварцевой стабилизацией
- Генератор на логических элементах
- Описание генератора частоты
- ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ Carefree WYD2010
- Применение генераторов синхронизирующих сигналов в сетях SONET
- Использование мультивибраторов
- Генератор тактовых импульсов для компьютера
- Двухтактный генератор для трудолюбивых
- Часовой кварц
- Простой функциональный генератор сигналов генератор сигналов DDS ZK-CLOCK (TL082)
- Генераторы с конденсаторами РР2
- Генераторы импульсов на лавинных транзисторах
Схемы генераторов световых и звуковых импульсов
На рис. 8, 9 показаны типовые схемы генераторов световых и звуковых импульсов, выполненные на транзисторах различного типа проводимости. Генераторы работоспособны в широком диапазоне питающих напряжений.
Рис. 8. Схема генератора световых импульсов, собранного на транзисторах.
Первый из них вырабатывает короткие вспышки света частотой единицы Гц, второй — импульсы звуковой частоты. Соответственно, первый генератор может быть использован в качестве маячка, светового метронома, второй — в качестве звукового генератора, частота колебаний которого зависит от положения ручки потенциометра R1. Эти генераторы можно объединить в единое целое.
Рис. 9. Схема генератора звуковых импульсов собранного на транзисторах.
Для этого достаточно один из генераторов включить в качестве нагрузки другого, либо параллельно ей. Например, вместо цепочки из светодиода HL1, R2 или параллельно ей (рис. 8) можно включить генератор по схеме на рис. 9. В итоге получится устройство периодической звуковой или светозвуковой сигнализации.
Бескорпусный генератор сигналов различной формы UDB1008S
Цифровой генератор электрических сигналов UDB1008S позволяет получать на выходе колебания синусоидальной, пилообразной и треугольной формы, а также прямоугольные импульсы и TTL. Эта модель является DDS синтезатором частоты из серии UDB1000, с наибольшей максимальной частотой генерации, равной 8 МГц.
Автоматический электронный прибор обеспечивает точность установки периода колебаний ±5 мкс и стабильность ±1 мкс. Выходной сигнал подаётся на два соответствующих выхода: аналоговый, с регулировкой амплитуды и смещения и цифровой, с уровнями TTL.
Генератор с подстройкой частоты оснащен поворотным регулятором амплитуды, энкодером для установки режимов, кнопками выбора и подтверждения значений устанавливаемых величин. Данные отображаются на двухстрочном, жидкокристаллическом дисплее с подсветкой.
Высокочастотный генератор частоты синусоидального сигнала обеспечивает высокую точность формы гармонических колебаний на выходе. Для других форм верхний предел равен 1 МГц.
Характеристики и особенности
Схема устройства позволяет получать колебания от 0,01 Гц. Эта величина эквивалентна периоду колебаний, равному 100 с и является необходимой при некоторых видах измерений и тестирования.
Прибор позволяет устанавливать частоты с шагом 0,01 Гц, при амплитуде на выходе до 10 В. Для TTL это значение равно 3 В. При необходимости можно задавать смещение уровня постоянного напряжения в пределах ±2,5 В.
Дополнительные возможности
Диапазон возможностей UDB1008S высокий: UDB1000 DDS signal generator может работать в режиме частотомера, в диапазоне от 1 Гц до 60 МГц и счётчика импульсов.
Входное напряжение — от 0,5 до 20 В. Кроме этого, дисплей может отображать напряжение до 5 В. Точность — 0,5%.
Буква S в названии модели свидетельствует о возможности поддержки прибором режима Sweep mode, известного как ГКЧ. При его помощи можно без особых трудностей можно находить резонансные частоты контуров, по фиксации амплитуды максимальных или минимальных значений напряжения для последовательных и параллельных соединений. Девиация частоты предварительно устанавливается во временном диапазоне от 1 до 99 с.
Приобрести генератор ВЧ сигналов можно в магазине Суперайс в Москве. Возможности прибора UDB1008S позволяют использовать его как радиолюбителями, так и профессионалами.
Статьи и видеообзоры:
Интерфейс программы управления:
Программное обеспечение:
Как сделать генератор повышенной нагрузки?
Обратим внимание на микросхемы. Генераторы импульсов указанного типа подразумевают использование мощного индуктора
Дополнительно следует подбирать только аналоговый адаптер. В данном случае необходимо добиться высокой пропускной способности системы. Для этого конденсаторы применяются только емкостного типа. Как минимум отрицательное сопротивление они должны быть способны выдерживать на уровне 5 Ом.
Резисторы для устройства подходят самые разнообразные. Если выбирать их закрытого типа, то необходимо предусмотреть для них раздельный контакт. Если все же остановиться на полевых резисторах, то изменение фазы в данном случае будет происходить довольно долго. Тиристоры для таких устройств практически бесполезны.
Модель прямоугольных импульсов с регулятором
На сегодняшний день генератор прямоугольных импульсов с регуляторами является довольно распространенным. Для того чтобы у пользователя была возможность настраивать предельную частоту устройства, необходимо использовать модулятор. На рынке производителями они представлены поворотного и кнопочного типа. В данном случае лучше всего остановиться на первом варианте. Все это позволит более тонко проводить настройку и не бояться за сбой в системе.
Устанавливается модулятор в генератор прямоугольных импульсов непосредственно на адаптер. При этом пайку необходимо производить очень аккуратно. В первую очередь следует хорошо прочистить все контакты. Если рассматривать бесконденсаторные адаптеры, то у них выходы находятся с верхней стороны. Дополнительно существуют аналоговые адаптеры, которые часто выпускаются с защитной крышкой. В этой ситуации ее необходимо удалить.
Для того чтобы у устройства была высокая пропускная способность, необходимо резисторы устанавливать попарно. Параметр возбуждения колебаний в данном случае обязан находиться на уровне 4 мс. Как основную проблему генератор прямоугольных импульсов (схема показана ниже) имеет резкое повышение рабочей температуры. В данном случае следует проверить отрицательное сопротивление бесконденсаторного адаптера.
Схема прибора
Главные составляющие элементы прибора:
- выпрямитель;
- емкость;
- транзистор.
Конденсатор подключен по последовательной цепи с выпрямителем, когда выпрямитель производит работу на транзистор, заряжается в данный момент времени до размера напряжения линии питания.
Зарядка осуществляется частотными импульсами 2 кГц. На нагрузке и емкости напряжение близко к синусу на 220 вольт. Для ограничения тока транзистор в период заряда емкости, предназначен резистор, подключенный с каскадом ключа по последовательной схеме.
Генератор выполнен на логических элементах. Он образует импульсы 2 кГц с амплитудой на 5 вольт. Сигнальная частота генератора определена свойствами элементов С2-R7. Такие свойства могут использоваться для настройки максимальной погрешности учета расхода энергии. Создатель импульсов выполнен на транзисторах Т2 и Т3. Он предназначен для управления ключом Т1. Создатель импульсов рассчитан так, что транзистор Т1 начинает насыщаться в открытом виде. Поэтому на нем расходуется небольшая мощность. Транзистор Т1 тоже закрывается.
Выпрямитель, трансформатор и остальные элементы создают блок питания низкой стороны схемы. Такой блок питания работает на 36 В для микросхемы генератора.
Сначала делают проверку блока питания отдельно от схемы с низким напряжением. Блок должен создавать ток выше 2-х ампер и напряжение 36 вольт, 5 вольт для генератора с малой мощностью. Далее делают наладку генератора. Для этого отключают силовую часть. От генератора должны идти импульсы размером 5 вольт, частотой 2 килогерца. Для настройки выбирают конденсаторы С2 и С3.
Создатель импульсов при проверке должен выдавать импульсный ток на транзисторе около 2 ампер, иначе транзистор выйдет из строя. Для проверки такого состояния включают шунт, при выключенной силовой схеме. Напряжение импульсов на шунте измеряют осциллографом на работающем генераторе. Основываясь на расчете, вычисляют значение тока.
Далее, проверяют силовую часть. Восстанавливают все цепи по схеме. Конденсатор отключают, вместо нагрузки применяют лампу. При подключении прибора напряжение при нормальной работоспособности прибора должно равняться 120 вольт. На осциллографе видно напряжение нагрузки импульсами с частотой, определенной генератором. Импульсы модулируются синусом напряжения сети. На сопротивлении R6 – импульсами выпрямленного напряжения.
При исправности устройства включают емкость С1, в результате напряжение повышается. При дальнейшем повышении размера емкости С1 доходит до 220 вольт. Во время этого процесса нужно контролировать температуру транзистора Т1. При сильном нагревании на небольшой нагрузке возникает опасность, что он не вошел в режим насыщения или не осуществилось полное закрытие. Тогда нужно сделать настройку создания импульсов. На практике такого нагрева не наблюдается.
В итоге, подключается нагрузка по номиналу, определяется емкость С1 такого значения, чтобы создать для нагрузки напряжение 220 вольт
Емкость С1 выбирают осторожно, с небольших значений, потому что повышение емкости резко повышает ток транзистора Т1. Амплитуду токовых импульсов определяют, если подключить осциллограф к резистору R6 по параллельной схеме
Импульсный ток не поднимется выше допускаемого для определенного транзистора. Если нужно, то ток ограничивают путем повышения значения сопротивления резистора R6. Оптимальным решением будет выбрать наименьший размер емкости конденсатора С1.
При данных радиодеталях прибор рассчитан на потребление 1 киловатта. Чтобы повысить мощность потребления, нужно применить более мощные силовые элементы ключа на транзисторе и выпрямителя.
Модели с кварцевой стабилизацией
Схема генератора импульсов данного типа предусматривает использование только бесконденсаторного адаптера. Все это необходимо для того, чтобы показатель возбуждения колебаний был как минимум на уровне 4 мс. Все это позволит также сократить термальные потери. Конденсаторы для устройства подбираются исходя из уровня отрицательного сопротивления. Дополнительно необходимо учитывать тип блока питания. Если рассматривать импульсные модели, то у них уровень выходного тока в среднем находится на отметке 30 В. Все это в конечном счете может привести к перегреву конденсаторов.
Чтобы избежать таких проблем, многие специалисты советуют устанавливать стабилитроны. Припаиваются они непосредственно на адаптер. Для этого необходимо прочистить все контакты и проверить напряжение катода. Вспомогательные адаптеры для таких генераторов также используются. В этой ситуации они играют роль коммутируемого трансивера. В результате параметр возбуждения колебаний повышается до 6 мс.
Генератор на логических элементах
Если использование транзисторов в генераторе кажется вам несовременным или громоздким или недопустимым по религиозным соображениям – выход есть! Можно использовать вместо транзисторов микросхемы. Обычно используется логика: элементы НЕ, И-НЕ, ИЛИ-НЕ, реже – Исключающее ИЛИ. Вообще говоря, нужны только элементы НЕ, остальное – излишества, только лишь ухудшающие скоростные параметры генератора.
Смотрим:
Видим страшную схему.
Квадратики с дырочкой в правом боку – это инвертеры. Ну или – «элементы НЕ». Дырочка как раз указывает на то, что сигнал инвертируется.
Что такое элемент НЕ с точки зрения банальной эрудиции? Ну, то есть, с точки зрения аналоговой техники? Правильно, это усилитель с обратным выходом. То есть, при увеличении напряжения на входе усилителя, напряжение на выходе пропорционально уменьшается . Схему инвертера можно изобразить примерно так (упрощенно):
Это конечно, слишком просто
Но доля правды в этом есть.
Впрочем, нам пока что это не столь важно
Итак, смотрим схему генератора. Имеем:
Два инвертера ( DD1.1, DD1.2)
Резистор R1
Колебательный контур L1 C1
Заметьте, что колебательный контур в этой схеме – последовательный. То есть, конденсатор и катушка стоят друг за другом. Но это – все равно колебательный контур, он рассчитывается по тем же формулам, и ничуть ни хуже (и не лучше) своего параллельного собрата.
Начнем сначала. Зачем нам нужен резистор?
Резистор создает отрицательную обратную связь (ООС) между выходом и входом элемента DD1.1. Это надо для того, чтобы держать под контролем коэффициент усиления – это раз, а также – чтоб создать на входе элемента начальное смещение – это два. Как это работает, подробно мы рассмотрим где-нибудь в обучалке по аналоговой технике. Пока что уясним, что благодаря этому резистору, на выходе и входе элемента, в отсутствие входного сигнала, устаканивается напряжение, равное половине напряжения питания. Точнее – среднему арифметическому напряжений логических «нуля» и «единицы». Не будем пока на этом заморачиваться, у нас еще много дел…
Итак, на одном элементе мы получили инвертирующий усилитель. То есть, усилитель, который «переворачивает» сигнал вверх ногами: если на входе много – на выходе мало, и наоборот. Второй элемент служит для того, чтобы сделать этот усилитель неинвертирующим. То есть, он переворачивает сигнал еще раз. И в таком виде, усиленный сигнал подается на выход, на колебательный контур.
А ну-ка, смотрим внимательно на колебательный контур? Как он включен? Правильно! Он включен между выходом и входом усилителя. То есть, он создает положительную обратную связь (ПОС). Как мы уже знаем из рассмотрения предыдущих генераторов, ПОС нужна для генератора, как валерьянка для кота. Без ПОС ни один генератор не сможет что? Правильно – возбудиться. И начать генерацию…
Все наверно знают такую вещь: если к входу усилителя подключить микрофон, к выходу – динамик, то при поднесении микрофона к динамику, начинается противный «свист». Это – ни что иное как генерация. Мы же подаем сигнал с выхода усилителя на вход. Возникает ПОС. Как следствие, усилитель начинает генерить.
Ну, короче, посредством LC -цепочки в нашем генераторе создается ПОС, приводящая к возбуждению генератора на резонансной частоте колебательного контура.
Ну что, сложно?Если (сложно)
{
чешем (репу) ;
читаем еще раз;
}
Теперь поговорим о разновидностях подобных генераторов.
Во-первых, вместо колебательного контура, можно включить кварц. Получится стабилизированный генератор, работающий на частоте кварца:
Если в цепь ОС элемента DD1.1 включить вместо резистора колебательный контур – можно завести генератор на гармониках кварца. Для получения какой-либо гармоники, нужно, чтобы резонансная частота контура была близка к частоте этой гармоники:
Если генератор делается из элементов И-НЕ или ИЛИ-НЕ, то входы этих элементов нужно запараллелить, и включать как обычный инвертор. Если используем Исключающее ИЛИ, то один из входов каждого элемента сажается на + питания.
Пара слов о микросхемах.
Предпочтительнее использовать логику ТТЛШ или быстродействующий КМОП.
Серии ТТЛШ: К555, К531, КР1533
Например, микросхема К1533ЛН1 – 6 инверторов.
Серии КМОП: КР1554, КР1564 (74 AC , 74 HC ), например – КР1554ЛН1
На крайний случай – старая добрая серия К155 (ТТЛ). Но ее частотные параметры оставляют желать лучшего, так что – я бы не стал использовать эту логику.
Рассмотренные здесь генераторы – далеко не все, что могут повстречаться вам в этой нелегкой жизни. Но зная основные принципы работы этих генераторов, будет уже намного проще понять работу других, укротить их и заставить работать на себя
Описание генератора частоты
Ко мне прямиком из Китая приехал генератор частот. Как вы видите, он представляет из себя довольно таки солидный прибор.
На лицевой панели генератора частот мы видим множество различных кнопок и крутилок. Эта крутилка предназначена для того, чтобы уменьшать или увеличивать амплитуду сигнала.
Эти кнопки предназначены для изменения формы сигналов.
Здесь можно увидеть такие сигналы, как
прямоугольный
треугольный
синусоидальный
Далее с помощью кнопок можно выбрать нужный диапазон, а также подключить какой-либо внешний сигнал.
Под внешним счетчиком здесь имеется ввиду какой-либо периодический сигнал с какого-нибудь генератора частоты либо схемы. Подавая такой сигнал на разъем нашего генератора частоты, мы с легкостью можем определить частоту неизвестного сигнала вплоть до 10 Мегагерц. То есть в данном случае генератор функций выполняет роль частотомера.
Далее идут разъемы.
VCF – Voltage Controlled Frequency. По нашему ГУН. Расшифровывается как Генератор Управляемый Напряжением. Само название говорит нам о том, что мы можем менять частоту сигнала с генератора частоты, подавая на этот разъем какое-либо напряжение. В зависимости от того, какая будет амплитуда подаваемого напряжения, такая и будет частота на выходе генератора частоты.
TTL OUT. ТТЛ – Транзисторно-Транзисторная-Логика. OUT – выход. Этот выход предназначен для тактирования логических микросхем, построенных на так называемой транзисторно-транзисторной логике. То есть это логические элементы, которые в своем составе имеют только биполярные транзисторы и резисторы. Такие микросхемы делают в основном на питание +5 В.
Логический ноль – это уровень напряжения от 0 и до +0,5 В. Уровень логической единички от 2,4 и до +5 В. Поэтому, с этого выхода мы получаем прямоугольный периодический сигнал с чередующимися нулями и единицами: 0101010101… Частоту такого сигнала выставляем с помощью крутилки и кнопок выбора диапазона.
OUTPUT. Выход с генератора. Именно с этого разъема мы и получаем необходимый нам сигнал с генератора функций.
Также небольшой интерес могут представлять из себя кнопки
Написано “attention”, что значит “внимание”. На самом деле там должно быть написано “attenuator”
Аттенюатор – слово не наше, означает как “ослабить, смягчить”. Видать, китайцы сэкономили на переводчике с китайского на английский ). Итак, что за кнопочки -20dB и -40dB? dB – это децибелы. А пока вот вам ссылочка на онлайн-калькулятор. Я за вас уже все посчитал. -20dB это значит, что мы можем ослабить выдаваемый генератором сигнал в 10 раз. -40dB – в 100 раз. А если нажмем сразу на 2 кнопочки разом, то у нас в сумме получится -60dB. Следовательно, мы можем ослабить сигнал в 1000 раз.
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ Carefree WYD2010
Характеристики генератора сигналов | |
Количество каналов | 2 |
Диапазон частот | 0,1 Гц — 10 МГц |
Форма сигналов | синусоидальная, прямоугольная, квадратная, треугольная, пилообразная, импульсная (коррекция рабочего цикла), произвольные сигналы |
Разрешение | 0,1 Гц |
Амплитуда выходного сигнала | ≥ 9 Впик |
Выходное сопротивление | 50 Ом (± 10%) |
Постоянное смещение | ± 2,5 В |
Стабильность частоты | ± 1 × 10-6 |
Точность частоты | ± 5 × 10-6 |
Искажение синуса | ≤ 0,8% (эталонная частота 1 кГц) |
Линейность треугольной волны | ≥ 98% |
Время нарастания/спада | 100 нс |
Диапазон рабочего цикла | 20 — 80% |
Диапазон регулировки фазы | 0 — 360° |
TTL-выход | |
Выходной уровень | ≥ 3 В |
Коэффициент нагрузки | 20 ТТL — элементов |
Счетчик | |
Диапазон измерения | 0 — 4294967295 |
Диапазон частот | 1 Гц — 60 МГц |
Амплитуда | 0,5 — 20 В |
Тип модуляции | амплитудная, частотная, фазовая модуляция |
Общие характеристики | |
Дисплей | LCD 1602 |
Габариты | 110 х 110 х 130 мм |
Вес нетто | 150 г |
Комплектация | генератор сигналов WYD2010 — 1 шт |
Совместимость | Импульсный блок питания 0520, 5В, 2А (адаптер) Двухканальный усилитель мощности сигнала JUNTEK DPA-1698 Усилитель мощности сигнала генератора JUNTEK DPA-2698 |
Функциональный DDS генератор сигналов WYD2010 на ПЛИС и микроконтроллере
Генератор с ШИМ-контроллером, быстродействующей микросхемой ПЛИС имеет расширенные возможности по формированию меняющегося напряжения различной формы, с возможностью регулирования их параметров. Форма сигналов, генерируемых независимо, может комбинироваться. Возможности следующие:
внутренняя амплитудная модуляция;
генератор прямоугольных импульсов с регулируемой скважностью;
регулировка коэффициента заполнения;
генерация сигналов треугольной, синусоидальной, пилообразной произвольной формы;
возможность осуществления модуляции типа AM, ASK, FSK, PSK;
наличие двух независимых каналов; • широтная модуляция; • возможность модуляции внешней частотой;
частотная манипуляция;
фазофая манипуляция;
сигналы произвольной формы.
Сборка модуля
Схема генератора ШИМ — довольно сложное устройство, судя по характеристикам, но сборка отличается простотой, так как все сложные для пайки элементы, такие как микросхемы, SMD-компоненты уже расположены на плате.
Задача конструктора состоит в размещении разъёмов для коаксильных кабелей, для кабеля питания, а также, выключателя. Сюда же относятся 5 кнопок для установки режима, три потенциометра. Регулировка заключается в подборе контрастности дисплея и начального смещения нуля, при помощи подстроечных потенциометров. Плата с дисплеем устанавливается на стойках, над основной платой.
Применение генераторов синхронизирующих сигналов в сетях SONET
Это тактовый генератор, используемый сетями поставщиков услуг часто в виде встроенного источника сигналов (BITS) для центрального офиса.
Цифровые коммутационные системы и некоторые системы передачи (например, системы синхронной цифровой иерархии SONET) зависят от надежной высококачественной синхронизации. Чтобы обеспечить такое состояние, большинство поставщиков услуг применяют схемы распределения сигналов синхронизации между офисами и реализуют концепцию BITS для обеспечения синхронизации внутри офиса.
На вход генератора тактовой частоты поступают входные сигналы синхронизации, а из выхода следуют выходные сигналы синхронизации. В качестве входных опорных сигналов могут выступать сигналы синхронизации DS-1 или CC (составные сигналы), выходными сигналами также могут быть сигналы DS-1 или CC.
Состав генератора:
- входной интерфейс синхронизации, принимающий входные сигналы DS-1 или CC;
- схема генерирования синхросигналов, которая создает синхросигналы, используемые схемой распределения выходной схемой распределения сигналов;
- выходная схема распределения сигналов синхронизации, создающая множество сигналов DS-1 и CC;
- схема контроля характеристик, предназначенная для контроля параметров синхронизации входных сигналов;
- интерфейс аварийной сигнализации, подсоединенный к системе управления аварийной сигнализацией центрального офиса;
- служебный интерфейс, предназначенный для использования местным обслуживающим персоналом и поддерживающий связь с удаленными служебными системами.
Использование мультивибраторов
Практические примеры использования мультивибратора приведены на рис. 4, 5.
Рис. 4. Схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов.
На рис. 4 показана схема генератора, позволяющего плавно перераспределять длительность или яркость свечения светодиодов, включенных в качестве нагрузки в цепи коллекторов. Вращением ручки потенциометра R3 можно управлять соотношением длительностей свечения светодиодов левой и правой ветвей.
Если увеличить емкость конденсаторов С1 и С2, частота генерации понизится, светодиоды начнут мигать. При уменьшении емкости этих конденсаторов частота генерации возрастает, мелькание светодиодов сольется в сплошное свечение, яркость которого будет зависеть от положения ручки потенциометра R3.
На основе подобного схемного решения могут быть собраны разнообразные полезные конструкции, например, регулятор яркости светодиодного фонарика; игрушка с мигающими глазами; устройство плавного изменения спектрального состава источника излучения (разноцветные светодиоды или миниатюрные лампочки и светосуммирую-
щий экран).
Рис. 5. Генератор переменной частоты — схема.
Генератор переменной частоты (рис. 5) конструкции В. Цибульского позволяет получать плавно изменяющееся со временем по частоте звучание [Р 5/85-54]. При включении генератора его частота возрастает с 300 до 3000 Гц за 6 сек (при емкости конденсатора C3 500 мкФ).
Изменение емкости этого конденсатора в ту или иную сторону ускоряет или, напротив, замедляет скорость изменения частоты. Плавно изменять эту скорость можно и переменным сопротивлением R6.
Для того чтобы этот генератор мог выполнять роль сирены, или быть использованным в качестве генератора качающейся частоты, можно предусмотреть схему принудительного периодического разряда конденсатора C3. Такие эксперименты можно рекомендовать для самостоятельного расширения познаний в области импульсной техники.
Генератор тактовых импульсов для компьютера
В компьютере генератор отвечает за синхронную работу всех его устройств: процессора, оперативной памяти, шин данных. Работу процессора при этом можно сравнить с работой часов. Исполнение инструкции центральным процессором осуществляется за определенное число тактов. Точно также функционируют и часы. Такты в механических часах определяются колебаниями маятника.
Производительность процессора напрямую зависит от частоты тактов. Чем больше частота тактов, тем больше инструкций процессор способен выполнить за определенный промежуток времени. Одна команда или инструкция может выполняться процессором за часть такта или за несколько сотен тактов. Общая тенденция современного развития компьютерной техники заключается в снижении количества тактов, выделяемых для выполнения одной простейшей инструкции.
Двухтактный генератор для трудолюбивых
Другой генератор, который мы рассмотрим – тоже двухтактный. Однако, он содержит колебательный контур, что делает его параметры более стабильными и прогнозируемыми. Хотя, по сути, он тоже довольно прост.
Вот он
Что мы здесь видим?
Видим колебательный контур L1 C1,
А дальше видим каждой твари по паре:
Два транзистора: VT1, VT2
Два конденсатора обратной связи: С2, С3
Два резистора смещения: R1, R2
Опытный глаз (да и не сильно опытный), обнаружит и в этой схеме схожесть с мультивибратором. Ну что же – оно так и есть!
Чем примечательна данная схема? Да тем, что ввиду использования двухтактного включения, она позволяет развивать двойную мощность, по сравнению со схемами 1-тактных генераторов, при том же напряжении питания и при условии применения тех же транзисторов. Во как! Ну, в общем, у нее почти нет недостатков
Механизм генерации
При перезаряде конденсатора в одну или другую сторону, через один из конденсаторов обратной связи поступает ток на соответствующий транзистор. Транзистор открывается, и добавляет энергию в «нужном» направлении. Вот и вся премудрость.
Особо изощренных вариантов исполнения этой схемы я не встречал…
Теперь немного креатива.
Часовой кварц
Что касается часового кварца, то схема Пирса работать с таковым наотрез отказалась. Часовым называется кварц, частота которого составляет 215, что равно значению в 32768 герц. Для его работы требуется 15-разрядная микросхема-счётчик. Таковой является микросхема K176ИЕ5.
Микросхема K176ИЕ5
Принцип её действия таков: после подсчёта 32768 импульсов на одну её ножку она подаёт импульс. Такой импульс выдаётся ровно раз в одну секунду. Как известно ещё со школьной программы, одно колебание в секунду и является одним герцем. И как же не использовать такую особенность кварца для часов. Отсюда и берёт своё название часовой кварц.
Итак, мы в рамках текущей публикации выяснили, что же такое генератор частот, рассмотрели принцип функционирования этого устройства на примере китайского прибора, а также самостоятельно собрали и протестировали простейший генератор частот на основе схемы Пирса. Надеемся, что приведённые здесь данные помогут начинающим радиоэлектронщикам войти в курс дела и лучше понять основы такого увлекательного занятия, как радиоэлектроника.
Простой функциональный генератор сигналов генератор сигналов DDS ZK-CLOCK (TL082)
Низкочастотный генератор синусоидального сигнала шагом регуляции 1-10000 Гц поставляется в собранном виде. Синусоида — не единственный тип сигнала, генерируемый схемой. Усилитель имеет на выходе сигнал в виде меандра, треугольника, пилы, белого шума и ЭКГ. ОУ вносит минимальные искажения.
DDS генератор имеет два выхода: низкочастотный, работающий для частот от 1 до 65,534 кГц и высокочастотный. Диапазон — от 1 до 8 МГц.
На выходе DDS амплитуду можно регулировать от 0,5 мВ до 14 В, а постоянное напряжение смещения — от 0,5 до 5 В. На высокочастотном выходе всегда фиксированная амплитуда сигнала — 5 В и отсутствует возможность задавать смещение.
Выходное сопротивление ZK-CLOCK практически не нагружает входные цепи УНЧ, так как равно 20-200 Ом. При прекращении работы все предварительные настройки сохраняются. Блок питания имеется в комплекте, вместе с кабелем BNC-Alligator.
Простота управления TL082
Функциональный генератор на ОУ «прямой» регулировки частоты не имеет. Надо остановить его, подобрать частоту и снова запустить. Во избежание лишних нажатий, при выборе режимов, амплитуд и частот в приборе используется 5 кнопок и два регулятора. Напряжение питания — 7 — 9 В.
Печатная плата устройства выполнена из гетинакса достаточной толщины и позволяет избежать разрыва дорожек при ее случайном изгибании или монтаже. Дорожки покрыты прочным, непрозрачным лаком. Центральное размещение кнопок на передней панели генератора исключает его наклоны во время работы.
Высокочастотный и низкочастотный выходы расположены рядом, на углу модели. Этот момент также способствует удобству эксплуатации. В комплект устройсва входит корпус, адаптер и шнур для соединения выходов с тестируемым устройством.
Комментарии по пользованию
Прибор предназначен для работы с низкочастотными сигналами, не превышающими 20 кГц. На этой частоте становятся заметными небольшие, пилообразные колебания, вдоль линии синусоиды. При настройке высококачественных усилителей низкой частоты может случиться так, что они будут восприняты за искажения, вносимые усилителем. Следует учесть, что на частотах больших 14 кГц, прямоугольные импульсы имеют значительные «выбросы», как на фронте, так и на спаде. Их величина составляет 1,5 от амплитуды.
На высокочастотном входе имеется 4 фиксированные частоты: 1, 2, 4 и 8 МГц. С увеличением частоты происходит большее искажение формы прямоугольных импульсов и величина выбросов.
Генераторы с конденсаторами РР2
Складывается генератор высоковольтных импульсов с конденсаторами данного типа довольно просто. На рынке найти элементы для таких устройств не составляет никаких проблем
Однако важно подобрать качественную микросхему. Многие с этой целью приобретают многоканальные модификации
Однако стоят они в магазине довольно дорого по сравнению с обычными типами.
Транзисторы для генераторов подходят больше всего однопереходные. В данном случае параметр отрицательного сопротивления не должен превышать 7 Ом. В такой ситуации можно надеяться на стабильность работы системы. Чтобы повысить чувствительность устройства, многие советуют применять стабилитроны. При этом триггеры используются крайне редко. Связано это с тем, что пропускная способность модели значительно снижается. Основной проблемой конденсаторов принято считать усиление предельной частоты.
В результате смена фазы происходит с большим отрывом. Чтобы наладить процесс должным образом, необходимо вначале работы настроить адаптер. Если уровень отрицательного сопротивления находится на отметке 5 Ом, то предельная частота устройства должна составлять примерно 40 Гц. В результате нагрузка с резисторов снимается.
Генераторы импульсов на лавинных транзисторах
Генераторы импульсов (рис. 12, 13) также выполнены на лавинных транзисторах микросхемы К101КТ1 типа п-р-п или К162КТ1 типа р-п-р, динисторах, или аналогах динисторов и лавинных транзисторов (см. рис. 1).
Рис. 12. Схема генератора импульсов на лавинных транзисторах К101КТ1.
Генераторы работают при напряжении питания выше 9 Б и вырабатывают напряжение треугольной формы. Выходной сигнал снимается с одного из выводов конденсатора.
Входное сопротивление следующего за генератором каскада (сопротивление нагрузки) должно в десятки раз превышать величину сопротивления R1 (или R2). Низкоомную нагрузку (до 1 кОм) можно включать в коллекторную цепь одного из транзисторов генератора.
Рис. 13. Схема генератора импульсов на лавинных транзисторах К162КТ1.