Генератор на транзисторе. автоколебания

Генератор ВЧ

Устройство для остановки электросчетчика энергии служит для питания электроприборов бытового назначения. Его выходное напряжение 220 вольт, потребляемая мощность 1 киловатт. Если в приборе применить составляющие элементы с характеристиками мощнее, то от него можно запитывать более мощные устройства.

Такой прибор включается в розетку бытовой сети, от него идет питание на нагрузку потребителей. Схема электрических проводов не подвергается каким-либо изменениям. Систему заземления подключать нет необходимости. Счетчик при этом работает, но учитывает примерно 25% энергии сети.

Действие устройства остановки в подключении нагрузки не к питанию сети, а к конденсатору. Заряд этого конденсатора совпадает с синусоидой напряжения сети. Заряд происходит высокочастотными импульсами. Ток, который расходуется потребителями из сети, состоит из высокочастотных импульсов.

Счетчики (электронные) имеют преобразователь, который не чувствителен к высоким частотам. Поэтому, расход энергии импульсного вида счетчик учитывает с отрицательной погрешностью.

Базовая схема осциллятора LC

Цепь состоит из индукционной катушки L и конденсатора C. Конденсатор накапливает энергию в форме электростатического поля и создает потенциал ( статическое напряжение ) на своих пластинах, в то время как индуктивная катушка накапливает энергию в форме электромагнитного поля. Конденсатор заряжается до напряжения питания постоянного тока V, поставив переключатель в положение A. Когда конденсатор полностью заряжен изменения переключателя в положение B.

Заряженный конденсатор теперь подключен параллельно через индуктивную катушку, поэтому конденсатор начинает саморазряжаться через катушку. Напряжение на C начинает падать, когда ток через катушку начинает расти.

Этот возрастающий ток создает электромагнитное поле вокруг катушки, которое сопротивляется этому потоку тока. Когда на конденсаторе C полностью разряжается энергия, которая была первоначально сохранена в конденсаторе C в качестве электростатического поля теперь сохраняется в индуктивной катушке L в виде электромагнитного поля вокруг обмоток катушек.

Поскольку в цепи теперь нет внешнего напряжения для поддержания тока внутри катушки, оно начинает падать, когда электромагнитное поле начинает разрушаться. В катушке индуцируется обратная ЭДС ( e = -Ldi / dt ), сохраняя ток в первоначальном направлении.

Этот ток заряжает конденсатор C с полярностью, противоположной его первоначальному заряду. C продолжает заряжаться до тех пор, пока ток не уменьшится до нуля и электромагнитное поле катушки полностью не исчезнет.

Энергия, первоначально введенная в цепь через переключатель, была возвращена конденсатору, который снова имеет потенциал электростатического напряжения на нем, хотя теперь он имеет противоположную полярность. Теперь конденсатор снова начинает разряжаться через катушку, и весь процесс повторяется. Полярность напряжения изменяется по мере того, как энергия передается туда-сюда между конденсатором и индуктором, создавая синусоидальное напряжение переменного тока и форму волны тока.

Этот процесс затем формирует основу цепи резервуара осцилляторов LC, и теоретически эта циклическая перемотка будет продолжаться бесконечно. Тем не менее, все не идеально, и каждый раз, когда энергия передается от конденсатора C к катушке индуктивности L и обратно от L к C, происходят потери энергии, которые со временем затухают колебания до нуля.

Это колебательное действие по передаче энергии назад и вперед между конденсатором C и катушкой индуктивности L будет продолжаться бесконечно, если бы не потери энергии в цепи. Электрическая энергия теряется в постоянном или реальном сопротивлении катушки индуктивности, в диэлектрике конденсатора и в излучении цепи, поэтому колебания неуклонно уменьшаются, пока они полностью не затухнут и процесс не остановится.

Затем в практической LC— схеме амплитуда колебательного напряжения уменьшается на каждом полупериоде колебаний и в конечном итоге затухает до нуля. Затем говорят, что колебания «демпфируются», причем величина демпфирования определяется качеством или добротностью цепи.

Классификация генераторов

Классификация преобразователей энергии даёт чёткое понятие – что такое генератор электрического тока. Различают электрические генераторы по следующим признакам:

  • автономность;
  • фазность;
  • режим работы;
  • сфера применения.

Автономность

Главное преимущество, которым обладает электрический генератор, – это его полная независимость от централизованных поставщиков энергии. Автономность электротехнического оборудования бывает стационарной и мобильной.

Стационарные

Обычно это генераторные станции, работающие от дизельных двигателей. Станции используют для электроснабжения потребителей в местах, удалённых от централизованных электрических сетей.

Стационарные генераторные станции необходимы для обеспечения током производственных процессов там, где даже кратковременные перебои поставки электроэнергии недопустимы.

Мобильные

Электрогенераторы мобильного типа выполнены в виде компактных аппаратов, которые можно перемещать в пространстве. Передвижные станции используют для электросварки, местного освещения, снабжения током бытовых электроприборов и многое другое.

Оборудование включает в себя двигатель внутреннего сгорания, работающий на бензине или дизельном топливе. Агрегаты имеют различные габариты. Компактный аппарат может транспортировать один человек. Существуют мобильные агрегаты, которые устанавливаются на специальном автомобильном прицепе.

Бензиновый генератор на колёсной паре

Фазность

По фазовой структуре электрического потока различают однофазные и трёхфазные агрегаты.

Однофазные

Генераторы, производящие однофазный ток, предназначены в основном для питания бытовых приборов. Чаще всего это мобильные аппараты. Однофазными агрегатами хозяева оснащают свои частные домовладения для бытовых нужд (освещения, питания электротехники и др.).

Трёхфазные

Генераторные источники трёхфазного тока используются для питания силового электрооборудования. В некоторых случаях получаемый трёхфазный ток разделяют по фазам. Таким образом, делают развод электропроводки по всему дому для питания бытовых электроприборов.

Важно! Все ветви фазового разделения должны равняться между собой мощности потребления. Если разница нагрузок будет велика, то генератор быстро выйдет из строя

Режимы работы

В зависимости от того, в каком режиме эксплуатируются агрегаты, их подразделяют на основные и резервные.

Основные

Аппараты предназначены для работы в постоянном режиме. Мощные электрогенераторы с дизельными двигателями относят к промышленным установкам. Устанавливаются там, где требуется получение электроэнергии круглосуточно.

Резервные

Само название агрегатов говорит о применении их в исключительных случаях – при внезапном отключении централизованного электроснабжения. Генераторы могут включаться в работу при срабатывании реле, реагирующего на исчезновение напряжения в электросети централизованного источника. Резервные аппараты рассчитаны на беспрерывную работу в течение нескольких часов.

Сфера применения

Генераторы изготавливают, рассчитанные на две сферы применения: для быта и производства.

Быт

Сейчас торговая сеть предлагает широкий выбор бытовых генераторов. Это однофазные установки, предназначенные для аварийного обеспечения электроэнергией частных домостроений. Также компактные агрегаты используют для питания выносного электрооборудования

Для бытовых электроприборов, использующих цифровую элементную базу важно качество тока. Устройство должно выдавать электроэнергию следующих параметров: 220 В, 1 А, 50 Гц

Мощные бытовые агрегаты используют для электросварочных работ. Их преимуществом является способность производить ток большой силы для получения электрической дуги.

Обратите внимание! Если в инструкции бытового аппарата производитель не оговаривает применение для электросварки, то его нельзя использовать для сварочных работ. В противном случае генератор выйдет из строя

Производство

Независимыми мощными стационарными генераторами оснащают цеха промышленных предприятий, жилые районы, строительные объекты, больницы и объёмные общественные здания.

Описание и принцип работы

В руководствах по усилителю мы видели, что одноступенчатый транзисторный усилитель может генерировать 180 o фазового сдвига между его выходным и входным сигналами при подключении в конфигурации типа класса А.

Чтобы генератор мог бесконечно выдерживать колебания, должна быть обеспечена достаточная обратная связь правильной фазы, то есть «положительная обратная связь», а транзисторный усилитель используется в качестве инвертирующего каскада для достижения этой цели.

В цепи RC-генератора вход смещен на 180 o через ступень усилителя и на 180 o снова через вторую инвертирующую ступень, что дает нам «180 o  + 180 o  = 360 o » фазового сдвига, который фактически равен 0 o, тем самым давая нам требуемый положительный отзыв. Другими словами, фазовый сдвиг контура обратной связи должен быть равен «0».

В генераторе сопротивления-емкости или просто в генераторе RC мы используем тот факт, что фазовый сдвиг происходит между входом в сеть RC и выходом из той же сети, например, с использованием элементов RC в ветви обратной связи.

Подписи к слайдам:

Слайд 1

Генератор на транзисторе. Автоколебания. L св . L Э Б Сдала Карташова Яна Ученица 11 а класса МБОУ СОШ №64

Слайд 2

Автоколебательной называется колебательная система, совершающая незатухающие колебания за счёт действия источника энергии, не обладающего колебательными свойствами. Например: часы, двигатель внутреннего сгорания, духовые инструменты.

Слайд 3

Обратная связь в генераторе автоколебаний должна удовлетворять двум условиям: 1. энергия от источника должна поступать в такт с колебаниями в контуре. 2. поступающая от источника энергия должна быть равна её потерям в контуре. L св . L Э Б К

Слайд 4

Колебательная система состоит из: Источник энергии Батарея гальванических элементов К лапан Транзистор Колебательная система Колебательный контур Обратная связь Индуктивная – через катушки

Слайд 5

Колебания в контуре происходит с большой частотой. Конденсатор восполняет потери энергии лишь в те моменты, когда его полярность совпадает с полярностью источника. В те моменты, когда полярности противоположны, он будет разряжаться через источник. L C _ + + _ _ +

Слайд 6

Очевидно, что обязательным условием получения незатухающих колебаний в контуре является восполнение потерь энергии именно в моменты совпадения полярности конденсатора и источника и отключение конденсатора от источника в другое время. В качестве устройства, способного осуществить такую функцию можно использовать транзистор , через который конденсатор колебательного контура будет соединен с источником тока. быстродействующий прибор пока на базу не подан сигнал – ток через транзистор не идет, конденсатор отключен от источника при подаче сигнала – ток через транзистор идет и конденсатор заряжается от источника ?

Слайд 7

В качестве устройства, способного «подать сигнал» в нужный момент, используют катушку обратной связи , один конец которой соединен с базой, а другой с эмиттером ( связь индуктивная) L св . L Э Б К Мы получили систему, в которой могут вырабатываться незатухающие колебания за счет восполнения потерь энергии от источника внутри самой системы.

Слайд 8

Процесс в автоколебательной системе: После зарядки конденсатора его верхняя обкладка заряжена положительно, нижняя — отрицательно Конденсатор начинает разряжаться через катушку. Ток в первой четверти периода постепенно нарастает, затем убывает, порождая переменное магнитное поле, пронизывающее витки катушки L . В катушке L св , которая индуктивно связана с катушкой контура, возникает магнитное поле, имеющее такое же направление и появляется индукционный ток, направленный от эмиттера к базе. Транзистор пропускает ток к конденсатору, в котором в это время протекает еще индукционный ток, совпадающий по направлению с первоначальным. Все потери энергии восполняются, знаки зарядов пластин меняются на противоположные L св . L Э Б — I К + —

Слайд 9

Ток через конденсатор теперь течет в противоположном направлении, нарастая в первой четверти и убывая во второй Порождаемое током магнитное поле, пронизывает витки катушки контура, а, следовательно, и индуктивно связанной с ней катушки L св .. В катушке обратной связи возникает индукционный ток, направленный от базы к эмиттеру , в результате чего потенциал базы оказывается выше и ток к конденсатору не идет. В конденсаторе протекает только индукционный ток, совпадающий по направлению с током в начале полупериода. Конденсатор перезаряжается, знаки пластин меняются на противоположные. L св . L Э Б + — + — + —

Описание и принцип работы

Осцилляторы преобразуют вход постоянного тока (напряжение питания) в выход переменного тока (форму волны), который может иметь широкий диапазон различных форм и частот, которые могут быть либо сложными по своей природе, либо простыми синусоидальными волнами в зависимости от применения.

Осцилляторы также используются во многих испытательных приборах, генерирующих синусоидальные, квадратные, пилообразные или треугольной формы волны или просто последовательность импульсов переменной или постоянной ширины. Осцилляторы LC обычно используются в радиочастотных цепях из-за их хороших характеристик фазового шума и простоты их реализации.

Осциллятор является в основном усилителем с «положительной обратной связью», или регенеративной обратной связью (в фазе) и одной из многих проблем в конструкции электронных схем является прекращение генерации усилителей при попытке заставить осциллятор колебаться.

Осцилляторы работают, потому что они преодолевают потери своей резонансной цепи обратной связи либо в виде конденсатора, индуктора или обоих в одной и той же цепи, подавая энергию постоянного тока с требуемой частотой в эту резонаторную цепь. Другими словами, осциллятор представляет собой усилитель, который использует положительную обратную связь, которая генерирует выходную частоту без использования входного сигнала.

Таким образом, осцилляторы являются самоподдерживающимися цепями, генерирующими периодическую форму выходного сигнала с точной частотой, и для того, чтобы любая электронная схема работала в качестве осциллятора, она должна иметь следующие три характеристики.

  • Некоторая форма усиления
  • Положительная обратная связь (регенерация)
  • Частота определения обратной связи сети

Осциллятор имеет небольшой усилитель с обратной связью по сигналу с коэффициентом усиления разомкнутого контура, равным или немного превышающим единицу для запуска колебаний, но для продолжения колебаний средний коэффициент усиления контура должен возвращаться к единице. В дополнение к этим реактивным компонентам требуется усилительное устройство, такое как операционный усилитель или биполярный транзистор.

В отличие от усилителя, для работы осциллятора не требуется внешний вход переменного тока, так как энергия источника постоянного тока преобразуется осциллятором в энергию переменного тока на необходимой частоте.

Базовая цепь обратной связи осциллятора


Где: β — доля обратной связи.

Осциллятор усиления без обратной связи

Осциллятор с обратной связью

Осцилляторы — это схемы, которые генерируют непрерывный выходной сигнал напряжения на требуемой частоте со значениями индукторов, конденсаторов или резисторов, образующих частотно-избирательный LC-резонансный контур емкости и сеть обратной связи. Эта сеть обратной связи является сетью ослабления, которая имеет коэффициент усиления меньше единицы ( β <1 ) и запускает колебания, когда Aβ> 1, который возвращается к единице ( Aβ = 1 ) после начала колебаний.

Частота генераторов LC контролируется с использованием настроенной или резонансной индуктивно-емкостной (LC) цепи, а результирующая выходная частота называется частотой колебаний. Делая обратную связь осцилляторов реактивной сетью, фазовый угол обратной связи будет изменяться как функция частоты, и это называется фазовым сдвигом.

Есть в основные типы осцилляторов:

  • 1. Синусоидальные осцилляторы   — они известны как гармонические осцилляторы и обычно представляют собой осциллятор типа «LC Tuned-feedback» или «RC-Tuned-Feedback», который генерирует чисто синусоидальный сигнал с постоянной амплитудой и частотой.
  • 2. Несинусоидальные осцилляторы   — они известны как осцилляторы релаксации и генерируют сложные несинусоидальные сигналы, которые очень быстро меняются от одного состояния устойчивости к другому, например, «прямоугольная волна», «треугольная волна» или «пилообразная волна» формы сигналов.

Генераторы синусоидальных колебаний.

Tремя основными типами электронных генераторов сигналов синусоидальной формы
являются LC генераторы, кварцевые генераторы и RC генераторы.
LC генераторы используют колебательный контур из конденсатора
и катушки индуктивности, соедененных либо параллельно, либо
последовательно, параметры которых определяют частоту колебаний.
LC генераторы используют в основном, в диапазоне радиочастот.
На низких(звуковых) частотах удобнее применять RC генераторы,
в которых для задания частоты колебаний используются резистивно —
емкостная цепь.

LC генераторы синусоидальных колебаний.

Генератор Хартли.


В генераторе Хартли, или как еще называют эту схему — индуктивной трехточке положительная обратная
связь, необходимая для возникновения колебаний берется с отвода катушки
индуктивности(L1 — L2) колебательного контура.

Генератор Колпитца.

В генераторе Колпитца (емкостной трехточке) положительная обратная связь снимается с средней точки
составной емкости(C1 — C2) колебательного контура.

Генератор Колпитца более стабилен, чем генератор Хартли и
более часто используется.
Когда требуется высокая стабильность, используют кварцевые
генераторы.

Кварц — это материал, способный преобразовывать механическую
энергию в электрическую и наоборот.
Если к кристаллу кварца приложить переменное напряжение,
он начнет колебаться, в такт с его частотой.
Каждый кристалл обладает собственной резонансной частотой,
зависящей от его размеров и структуры.
Чем ближе частота приложенного напряжения, к резонансной
частоте, тем выше интенсивность колебаний.
Для изготовления кварцевого резонатора на кристаллическую
пластинку кварца наносят металлические электроды.

Схема кварцевого генератора Хартли с параллельной обратной
связью.

Кварц включен последовательно в цепь обратной связи.
Если частота колебательного контура отклоняется от
частоты кварца, волновое сопротивлние(импенданс) кварца
увеличивается, уменьшая величину обратной связи с колебательным
контуром. Колебательный контур возвращается на частоту кварца.

Генератор Пирса.

Очень популярная схема, поскольку в ней не используются катушки
индуктивности.

Верхний предел резонанса кварца составляет 25 МГц.

Если необходим стабильный генератор на более высокой
частоте используют схему Батлера.
Колебательный контур настраивается на частоту кварца или
на частоту одной из его нечетных гармоник (третьей или пятой).

Генераторы с обратной связью — Хартли и Колпитца

Наиболее распространенной считается схема генератора Хартли или как её еще называют индуктивная трехточка. В случае, если недопустимо использование катушки индуктивности с отводами применяется схема генератора Колпитца. Возможны три варианта данных схем: на каскаде с общим эмиттером, с общей базой, с общим коллектором.

В схеме генератора Хартли используется либо одна катушка индуктивности с отводом (аналогично, как у автотрансформатора), либо две близко расположенные отдельные. Емкости служат для фильтрации составляющих постоянного тока и напряжения.

Схема Колпитца (емкостная трехточка) является более простой и стабильной. В ней отвод берется не от индуктивности, а от емкостного делителя.

У генераторов с обратной связью форма выходного сигнала близка к синусоиде. Однако, для повышения КПД данные устройства используют в режиме перевозбуждения. Что выдает дополнительные гармоники, однако, их количество меньше, чем у инверторов с выходным прямоугольным сигналом.

Последние статьи

Самое популярное

Полезные сервисы

Автоколебательный блокинг-генератор

Как говорилось выше, автоколебательный блокинг-генератор является наиболее распространённым. Давайте рассмотрим его устройство и принцип работы на основе простейшей схемы, которая изображена ниже



Простейшая схема автоколебательного блокинг-генератора.

Простейший блокинг-генератор состоит из транзистора VT1 по схеме с общим эмиттером, трансформатора обратной связи Т1, демпфирующей цепи в виде диода VD1, времязадающей цепочки R2C1, базового резистора R1 и сопротивления нагрузки Rн.

Рассмотрим работу блокинг-генератора на основе временных диаграмм его работы, которые представлены ниже



Временные диаграммы работы блокинг-генератора.

Первая стадия (формирование фронта импульса) начинается в момент времени t, то есть в момент включения питания либо по окончании периода предыдущего импульса. В этот момент транзистор оказывается заперт, а конденсатор С1 начинает заряжаться через резистор R2. По мере заряда конденсатора С1 увеличивается напряжение UBE на базе транзистора VT1, что приводит к постепенному открытию транзистора и возрастанию коллекторного тока IC. Возрастающий ток коллектора приводит к формированию ЭДС в трансформаторе и на его зажимах формируется возрастающее напряжение и ток пропорционально току коллектора транзистора VT1. Данная стадия заканчивается в момент времени t1, когда транзистор перешёл полностью в режим насыщения.

Вторая стадия (формирование вершины импульса) начинается в момент времени t1. После того как транзистор VT1 перешёл в режим насыщения на него уже мало влияет ток протекающий через базу транзистора, поэтому нарастание амплитуды импульса прекращается и начинает формироваться плоская вершина импульса. В данный период времени напряжение на зажимах трансформатора практически не изменяется, поэтому напряжение на коллекторе не изменяется, но так как происходит разряд конденсатора С1 уменьшается напряжение на базе транзистора VT1, а следовательно и ток базы Ib. По мере уменьшения тока базы Ib начинает уменьшаться ток коллектора IC, но вследствие индуктивного характера коллекторной нагрузки, начинает увеличиваться ток намагничивания трансформатора, а, следовательно, и коллекторный ток транзистора VT1, в результате напряжение на коллекторе остаётся постоянным некоторое время, которое зависит от параметров трансформатора Т1.

Третья стадия (формирование среза импульса) начинается в момент времени t2. В это время ток подмагничивания уменьшается и транзистор VT1 начинает закрываться под воздействием уменьшающегося тока базы Ib, вследствие разряда конденсатора С1. Когда транзистор полностью закроется коллекторный ток уменьшится практически до нуля и потенциал на выводах трансформатора Т1 также уменьшится, но вследствие этого в обмотках трансформатора возникнет ток обратный току коллектора IC и соответственно току базы Ib, что приведёт к ещё быстрейшему разряду конденсатора и образованию отрицательного всплеска напряжения на базе. Отрицательный импульс напряжения на базе транзистора VT1 ещё быстрее разрядит конденсатор, что уменьшит продолжительность среза импульса по сравнению с фронтом.

Четвёртая стадия (восстановление) начинается в момент времени t3. В это время транзистор находится в полностью закрытом состоянии. В этот период времени происходит рассеивание энергии в конденсаторе и трансформаторе, запасённой в третьей стадии работы блокинг-генератора. В этот период времени в трансформаторе могут возникать некоторые колебательные процессы (изменение напряжения до уровня UK max), что в общем случае нежелательны, поэтому для предотвращения этого параллельно коллекторной обмотке трансформатора включают различные демпфирующие цепи, в данном случае эту роль выполняет диод VD1.

Трёхточечные схемы автогенераторов

Индуктивная трехточечная схема

Трехточечными такие генераторы называют потому что контур в них имеет три вывода:

Элементы R1, R2, R3 C3, как и в предыдущей схеме, обеспечивают режим работы по постоянному току транзистора VT, в коллекторную цепь которого включен колебательный контур L»L»»C2. Выходной сигнал снимается с коллектора транзистора VT (или с L»»), сигнал ПОС — с катушки L». Поскольку напряжения этих сигналов противофазны, то автоматически выполняется условие баланса фаз. Сигнал ПОС подается на базу транзистора через разделительный конденсатор С1, сопротивление которого на частоте генерации мало. Этот конденсатор предотвращает попадание постоянной составляющей в базовую цепь (через катушку). Общая точка L» и L»» подключена к источнику питания, сопротивление которого переменному току незначительно. Условие баланса амплитуд выполняют подбором числа витков L»L»».

Емкостная трехточечная схема

В этой схеме, аналогично предыдущей, режим по постоянному току определяют элементы R1, R2, R3, R4, C2. В коллекторную цепь транзистора включен контур L1C3C4. Сигнал ПОС снимается с кондера С4 и через конденсатор С1 поступает в базовую цепь. С1 не пропускает высокое коллекторное напряжение на базу транзистора. Общую точку конденсаторв С3, С4 можно считать подключенной к источнику питания, поскольку его сопротивление переменному току незначительно.

Частота генерации определяется по формуле:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector