Что такое атмосфера земли
Содержание:
Структура ионосферы
Ионограмма — зависимость плотности плазмы (измеряемой по критической частоте) от высоты над землёй
В начале 20-х годов советский ученый М. В. Шулейкин установил, что в ионосфере должно быть по крайней мере два максимума электронной концентрации: один на высоте порядка 100 км, а другой на высоте 200 км. Анализируя результаты измерений напряженности поля дальних радиостанций в различных пунктах земной поверхности, он пришел также к выводу о существовании в ионосфере неоднородностей, имеющих форму облаков. В результате отражения радиоволн от таких облачных образований к антенне приемного устройства могут прийти два и более лучей, при сложении которых возможно либо усиление, либо ослабление (замирание) принимаемого сигнала. Итогом работы М. В. Шулейкина была разработка основ современной теории преломления радиоволн в ионосфере. Его работы о влиянии ионосферы на распространение радиоволн нашли дальнейшее развитие в последующих исследованиях Л. А. Жекулина, В. Л. Гинзбурга и ряда других ученых.В зависимости от плотности заряженных частиц N в ионосфере выделяются слои D, E и F.
Слой D
В области D (60—90 км) концентрация заряженных частиц составляет Nmax~ 10²—10³ см−3 — это область слабой ионизации. Основной вклад в ионизацию этой области вносит рентгеновское излучение Солнца. Также небольшую роль играют дополнительные слабые источники ионизации: метеориты, сгорающие на высотах 60—100 км, космические лучи, а также энергичные частицы магнитосферы (заносимые в этот слой во время магнитных бурь).
Слой D также характеризуется резким снижением степени ионизации в ночное время суток.
В D-слое наиболее полно исследован состав кластерных ионов и протекающие с их участием процессы.
Слой E
Область E (90—120 км) характеризуется плотностями плазмы до Nmax~ 105 см−3. В этом слое наблюдается рост концентрации электронов в дневное время, поскольку основным источником ионизации является солнечное коротковолновое излучение, к тому же рекомбинация ионов в этом слое идёт очень быстро и ночью плотность ионов может упасть до 10³ см−3. Этому процессу противодействует диффузия зарядов из области F, находящейся выше, где концентрация ионов относительно велика, и ночные источники ионизации (геокороное излучение Солнца, метеоры, космические лучи и др.).
Спорадически на высотах 100—110 км возникает слой ES, очень тонкий (0,5—1 км), но плотный. Особенностью этого подслоя является высокая концентрации электронов (ne~ 105 см−3), которые оказывают значительное влияние на распространение средних и даже коротких радиоволн, отражающихся от этой области ионосферы.
Слой E, в силу относительно высокой концентрации свободных носителей заряда, играет важную роль в распространении средних и коротких волн. Слой E иногда называют «слой Кеннелли — Хевисайда».
Слой F
Областью F называют теперь всю ионосферу выше 130—140 км. Максимум ионообразования достигается на высотах 150—200 км. Однако вследствие диффузии и относительно долгой длительности жизни ионов образовавшаяся плазма распространяются вверх и вниз от области максимума. Из-за этого максимальная концентрация электронов и ионов в области F находится на высотах 250—400 км.
В дневное время также наблюдается образование «ступеньки» в распределении электронной концентрации, вызванной мощным солнечным ультрафиолетовым излучением. Область этой ступеньки называют областью F1 (150—200 км). Она заметно влияет на распространение коротких радиоволн.
Выше лежащую часть слоя F называют слоем F2. Здесь плотность заряженных частиц достигает своего максимума — N ~ 105—106 см−3.
На больших высотах преобладают более лёгкие ионы кислорода (до высот 400—1000 км), а ещё выше — ионы водорода (протоны) и в небольших количествах — ионы гелия.
Особенностью слоя F является то, что он отражает радиоволны в диапазоне коротких волн на частотах от нескольких мегагерц до 10 мегагерц, что делает возможным передачу таких радиосигналов на значительные расстояния.[источник не указан 2427 дней]
Несмотря на то что ионный состав слоя F зависит от солнечной активности, его способность отражать электромагнитные волны с частотой, меньшей 10 МГц, стабильна.
За открытие слоя F английскому физику Эдварду Виктору Эплтону в 1947 году была присуждена Нобелевская премия по физике.
Примечания
- Будыко М. И., Кондратьев К. Я. Атмосфера Земли // Большая советская энциклопедия. 3-е изд. / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1970. — Т. 2. Ангола — Барзас. — С. 380—384.
- ↑
- ↑
- Thompson A. (англ.). space.com (9 April 2009). Дата обращения 19 июня 2017.
- . Earth System Research Laboratory. Global Greenhouse Gas Reference Network. Дата обращения 6 февраля 2017.
- при 0,03 % по объему
- Хромов С. П. Влажность воздуха // Большая советская энциклопедия. 3-е изд. / Гл. ред. А. М. Прохоров. — М.: Советская Энциклопедия, 1971. — Т. 5. Вешин — Газли. — С. 149.
- Dr. Tony Phillips. (англ.). SpaceDaily (16 July 2010). Дата обращения 19 июня 2017.
Атмосферы других планет
В Солнечной системе 8 планет и более 160 спутников. Из них, имеют значимые атмосферы:
- Земля;
- Венера;
- Сатурн;
- Марс;
- Уран;
- Юпитер;
- Нептун;
- Титан (спутник Сатурна);
- Плутон.
Атмосфера Венеры
Атмосфера Венеры составляет около 96% углекислого газа, а температура поверхности около 464° C. Облака из серной кислоты движутся со скоростью примерно 100 метров в секунду.
Атмосфера Марса
На Марсе есть тонкая атмосфера, состоящая примерно на 95% из углекислого газа, а остальная часть из азота и аргона. Средняя температура приземного воздуха на Марсе -63° C. На Марсе наблюдаются облака как из воды, так и из углекислого газа. Ещё там чётко определены времена года.
Тропосфера:
Тропосфера – это первый, самый нижний слой атмосферы – «придонный», в котором обитает все живое на планете: человек, животные, растения. Тропосфера простирается на несколько километров: возле полюсов его высота не превышает 8-10 км, а в районе экватора достигает 18 км. Такая разность в высоте атмосферы обусловлено центробежной силой Земли и тем, что ширина планеты неодинакова в разных ее частях (Земля имеет эллиптическую форму). Еще один фактор, влияющий на величину слоя – сезон, т.е. температурный режим. В теплое время года воздушные массы поднимаются выше, в холодное – опускаются к поверхности планеты, тем самым увеличивая или уменьшая ширину тропосферы.
Свое название слой получил от древнегреческих слов τρόπος – «поворот, изменение» и σφαῖρα – «шар». Первая часть слова полностью соответствует основным критериям тропосферы – подвижности, изменчивости, динамичности, формирующих все те явления, которые принято называть «климат» и «погода». Это:
– образование облаков;
– циркуляция жидкости;
– образование циклонов, антициклонов;
– генерация ветров.
Тропосфера – самый тяжелый слой, т.к. в нем содержится 80% массы атмосферы, 50% всех газов и практически вся влага, что позволяет обитателям тропосферы «дышать». Удерживает он и тепло, сохраняя поглощаемые Землей солнечные лучи, поэтому при удалении от ее поверхности понижаются и давление, и температура. Причем температура понижается на 0,5-0,7 градуса Цельсия каждые 100 метров. Также с набором высоты усиливается ветер: на каждый километр высоты его скорость растет на 2-3 км/с. Примечательно, что снижение температуры характерно только для нижнего слоя (тропосферы), во всех же иных она растет по мере приближения к верхним границам.
На нижней границе, возле литосферы, находится еще один барьер: приземной пограничный слой, самый важный для циркуляции всей атмосферы. Именно здесь происходит отдача тепловой энергии и излучения планетой, создаются перепады давления и ветряные потоки, позже разделяемые и направляемые неровностями поверхности (горами, скалами и т.д.).
Верхним пределом тропосферы является тропопауза – промежуточный барьер между тропосферой и следующим слоем атмосферы – стратосферой.
Нормальным давлением у нижней границы тропосферы принято считать показатель в 1000 миллибар, который максимально приближен к эталону – 1013 миллибар (одна «атмосфера»). У верхнего слоя давление составляет уже 200 мБар, а при удалении от уровня моря на 45 км падает до 1 мБара.
За тропосферой и тропопаузой следует следующий слой атмосферы – стратосфера. В тропопаузе прекращается снижение температуры воздуха с возрастанием высоты.
История образования атмосферы
Согласно наиболее распространённой теории, атмосфера Земли на протяжении истории последней перебыла в трёх различных составах. Первоначально она состояла из лёгких газов (водорода и гелия), захваченных из межпланетного пространства. Это так называемая первичная атмосфера. На следующем этапе активная вулканическая деятельность привела к насыщению атмосферы и другими газами, кроме водорода (углекислым газом, аммиаком, водяным паром). Так образовалась вторичная атмосфера. Эта атмосфера была восстановительной. Далее процесс образования атмосферы определялся следующими факторами:
- утечка легких газов (водорода и гелия) в межпланетное пространство;
- химические реакции, происходящие в атмосфере под влиянием ультрафиолетового излучения, грозовых разрядов и некоторых других факторов.
Постепенно эти факторы привели к образованию третичной атмосферы, характеризующейся гораздо меньшим содержанием водорода и гораздо большим — азота и углекислого газа (образованы в результате химических реакций из аммиака и углеводородов).
Азот
Образование большого количества азота N2{\displaystyle {\ce {N2}}} обусловлено окислением аммиачно-водородной атмосферы молекулярным кислородом O2{\displaystyle {\ce {O2}}}, который стал поступать с поверхности планеты в результате фотосинтеза, начиная с 3 млрд лет назад. Также азот N2{\displaystyle {\ce {N2}}} выделяется в атмосферу в результате денитрификации нитратов и других азотосодержащих соединений. Азот окисляется озоном до NO{\displaystyle {\ce {NO}}} в верхних слоях атмосферы.
Азот N2{\displaystyle {\ce {N2}}} вступает в реакции лишь в специфических условиях (например, при разряде молнии). Окисление молекулярного азота озоном при электрических разрядах в малых количествах используется в промышленном изготовлении азотных удобрений. Окислять его с малыми энергозатратами и переводить в биологически активную форму могут цианобактерии (сине-зелёные водоросли) и клубеньковые бактерии, формирующие ризобиальный симбиоз с бобовыми растениями, которые могут быть эффективными сидератами — растениями, которые не истощают, а обогащают почву естественными удобрениями.
Кислород
Состав атмосферы начал радикально меняться с появлением на Земле живых организмов, в результате фотосинтеза, сопровождающегося выделением кислорода и поглощением углекислого газа. Первоначально кислород расходовался на окисление восстановленных соединений — аммиака, углеводородов, закисной формы железа, содержавшейся в океанах и другом. По окончании данного этапа содержание кислорода в атмосфере стало расти. Постепенно образовалась современная атмосфера, обладающая окислительными свойствами. Поскольку это вызвало серьёзные и резкие изменения многих процессов, протекающих в атмосфере, литосфере и биосфере, это событие получило название Кислородная катастрофа.
В течение фанерозоя состав атмосферы и содержание кислорода претерпевали изменения. Они коррелировали прежде всего со скоростью отложения органических осадочных пород. Так, в периоды угленакопления содержание кислорода в атмосфере, видимо, заметно превышало современный уровень.
Углекислый газ
Основные статьи: Геохимический цикл углерода и Углекислый газ в атмосфере Земли
Содержание в атмосфере CO2{\displaystyle {\ce {CO2}}} зависит от вулканической деятельности и химических процессов в земных оболочках, от интенсивности биосинтеза и разложения органики в биосфере Земли. Практически вся текущая биомасса планеты (около 2,4⋅1012 тонн) образуется за счёт углекислоты, азота и водяного пара, содержащихся в атмосферном воздухе. Захороненная в океане, в болотах и в лесах органика превращается в уголь, нефть и природный газ.
Содержание углекислого газа в атмосфере зависит также от растворимости газа в воде океанов, что в связано с температурой воды и ее кислотностью.
Инертные газы
Источниками инертных газов являются вулканические извержения и распад радиоактивных элементов. Земля в целом, и атмосфера в частности, обеднены инертными газами по сравнению с космосом и некоторыми другими планетами. Это относится к гелию, неону, криптону, ксенону и радону. Концентрация же аргона, напротив аномально высока и составляет почти 1 % от газового состава атмосферы. Большое количество данного газа обусловлено интенсивным распадом радиоактивного изотопа калий-40 в недрах Земли.
Молекула — воздух
Построение фронта волны методом Гюйгенса ( для пульсирующего баллона. |
Молекулы воздуха не выстраиваются в некий стройный ряд, где все связывающие их пружинки действовали бы строго в одном направлении. Поэтому если бы удалось заморозить воздух, в котором распространяется звуковая волна, и прямо в середину участка сгущения ввести прибор для измерения давления, обладающий направленным действием, то, как бы мы ни поворачивали прибор во всех направлениях, его показание осталось бы неизменным.
Молекула воздуха при температуре 25 С и давлении 760 мм рт. ст., двигаясь со средней скоростью 450 м / сек, успевает между двумя последовательными столкновениями пролететь около 7 — Ю-6 см. Если в воздухе отсутствует струйное, макроскопическое движение, то сколько примерно времени понадобится молекуле, чтобы удалиться на 1 см от точки, в которой она находится в данный момент времени.
Молекула воздуха при температуре 25 С и давлении 760 мм рт. ст., двигаясь со средней скоростью 450 м / сек, успевает между двумя последовательными столкновениями пролететь около. Если в воздухе отсутствует струйное, макроскопическое движение, то сколько примерно времени понадобится молекуле, чтобы удалиться на 1 см от точки, в которой она находится в данный момент.
Молекулы воздуха, диффундирующие из откачиваемого объема в область завесы, увлекаются парами масла в область форвакуума и удаляются. Обратная диффузия практически невозможна, так как молекулы воздуха испытывают многократные соударения с молекулами пара и не способны длительно двигаться навстречу паровым струям.
Молекулы воздуха в некоторых случаях приобретают отрицательный заряд.
Поэтому молекулы воздуха создают результирующее давление на зачерненную поверхность крылышка, складывающееся с давлением света. Радиометрический эффект может привести к тому, что в опыте давление на зачерненное крылышко окажется больше давления на зеркальное крылышко тех же размеров.
Принцип работы ионизационного вакуумметра. |
Здесь молекула воздуха получает один отрицательный электрон и снова становится нейтральной. Вследствие этого образуется поток электронов от пластины, который можно измерить ( в микроамперах) и тем самым узнать о степени вакуума. Степень ионизации и, следовательно, поток электронов, идущий от пластины, прямо пропорционален количеству молекул воздуха в вакуумметре. Чем глубже вакуум, тем меньше молекул воздуха находится в приборе и тем меньше ток, идущий от пластины.
Принцип работы ионизационного вакуумметра. |
Здесь молекула воздуха получает один отрицательный электрон и снова становится нейтральной. Вследствие этого образуется поток электронов от пластины, который можно измерить IK микроамперах. Степень ионизации и, следовательно, поток электронов, идущий от пластины, прямо пропорционален количеству молекул воздуха в вакуумметре. Чем глубже вакуум, тем меньше молекул воздуха находится в приборе и тем меньше ток, идущий от пластины.
Сколько молекул воздуха выходит из комнаты объемом V0 120 м3 при повышении температуры от tl 15 С до гг 25 С.
Удары молекул воздуха, совершающих тепловое движение, приводят к тому, что угол поворота зеркальца испытывает хаотические колебания вблизи положения механического равновесия. Фактически это то же броуновское движение, которое отличается от рассмотренного в § 1 движения взвешенной в жидкости частицы только тем, что здесь рассматривается не поступательное, а вращательное движение вблизи устойчивого, а не безразличного положения равновесия. Интенсивность такого движения зависит от температуры, оно принципиально неустранимо и ставит предел чувствительности измерительной аппаратуры.
Сколько молекул воздуха содержится в баллоне вместимостью 60 л при температуре 27 С и давлении 5 103 Па. Чему равна масса одной мэлекулы воздуха.
Число молекул воздуха в нем при атмосферном давлении.
Ночные процессы
В ходе внезапного стратосферного потепления (ВСП) гравитационные планетарные волны перемещаются из тропосферы — нижнего слоя атмосферы — в стратосферу. Эти волны возникают из-за мощных воздушных потоков, протекающих над горными хребтами. Попав в стратосферу, волны начинают взаимодействовать с полярными струйными течениями, нарушая систему циркуляции тёплого и холодного воздуха. Поднимаясь всё выше и выше, они в конечном счёте достигают ионосферы, в которой из-за их активности может образоваться дыра.
Ранее считалось, что эти процессы происходят исключительно в дневное время. Однако американским учёным удалось зарегистрировать ВСП в ночной ионосфере. В этом исследователям помогли данные обсерватории Аресибо в Пуэрто-Рико.
«Выяснилось, что ВСП также может влиять на состояние ионосферы в ночное время суток в низких и средних широтах. Эти результаты поднимают новые вопросы. Теперь необходимо думать над методами, которые помогли бы нам ещё больше узнать о том, какие факторы могут влиять на ионосферу», — сообщил автор исследования Хорхе Л. Чау.
- Геомагнитная буря
Структура ионосферы
Ионограмма — зависимость плотности плазмы (измеряемой по критической частоте) от высоты над землёй
В начале 20-х годов советский ученый М. В. Шулейкин установил, что в ионосфере должно быть по крайней мере два максимума электронной концентрации: один на высоте порядка 100 км, а другой на высоте 200 км. Анализируя результаты измерений напряженности поля дальних радиостанций в различных пунктах земной поверхности, он пришел также к выводу о существовании в ионосфере неоднородностей, имеющих форму облаков. В результате отражения радиоволн от таких облачных образований к антенне приемного устройства могут прийти два и более лучей, при сложении которых возможно либо усиление, либо ослабление (замирание) принимаемого сигнала. Итогом работы М. В. Шулейкина была разработка основ современной теории преломления радиоволн в ионосфере. Его работы о влиянии ионосферы на распространение радиоволн нашли дальнейшее развитие в последующих исследованиях Л. А. Жекулина, В. Л. Гинзбурга и ряда других ученых.В зависимости от плотности заряженных частиц N в ионосфере выделяются слои D, E и F.
Слой D
В области D (60—90 км) концентрация заряженных частиц составляет Nmax~ 10²—10³ см−3 — это область слабой ионизации. Основной вклад в ионизацию этой области вносит рентгеновское излучение Солнца. Также небольшую роль играют дополнительные слабые источники ионизации: метеориты, сгорающие на высотах 60—100 км, космические лучи, а также энергичные частицы магнитосферы (заносимые в этот слой во время магнитных бурь).
Слой D также характеризуется резким снижением степени ионизации в ночное время суток.
В D-слое наиболее полно исследован состав кластерных ионов и протекающие с их участием процессы.
Слой E
Область E (90—120 км) характеризуется плотностями плазмы до Nmax~ 105 см−3. В этом слое наблюдается рост концентрации электронов в дневное время, поскольку основным источником ионизации является солнечное коротковолновое излучение, к тому же рекомбинация ионов в этом слое идёт очень быстро и ночью плотность ионов может упасть до 10³ см−3. Этому процессу противодействует диффузия зарядов из области F, находящейся выше, где концентрация ионов относительно велика, и ночные источники ионизации (геокороное излучение Солнца, метеоры, космические лучи и др.).
Спорадически на высотах 100—110 км возникает слой ES, очень тонкий (0,5—1 км), но плотный. Особенностью этого подслоя является высокая концентрации электронов (ne~ 105 см−3), которые оказывают значительное влияние на распространение средних и даже коротких радиоволн, отражающихся от этой области ионосферы.
Слой E, в силу относительно высокой концентрации свободных носителей заряда, играет важную роль в распространении средних и коротких волн. Слой E иногда называют «слой Кеннелли — Хевисайда».
Слой F
Областью F называют теперь всю ионосферу выше 130—140 км. Максимум ионообразования достигается на высотах 150—200 км. Однако вследствие диффузии и относительно долгой длительности жизни ионов образовавшаяся плазма распространяются вверх и вниз от области максимума. Из-за этого максимальная концентрация электронов и ионов в области F находится на высотах 250—400 км.
В дневное время также наблюдается образование «ступеньки» в распределении электронной концентрации, вызванной мощным солнечным ультрафиолетовым излучением. Область этой ступеньки называют областью F1 (150—200 км). Она заметно влияет на распространение коротких радиоволн.
Выше лежащую часть слоя F называют слоем F2. Здесь плотность заряженных частиц достигает своего максимума — N ~ 105—106 см−3.
На больших высотах преобладают более лёгкие ионы кислорода (до высот 400—1000 км), а ещё выше — ионы водорода (протоны) и в небольших количествах — ионы гелия.
Особенностью слоя F является то, что он отражает радиоволны в диапазоне коротких волн на частотах от нескольких мегагерц до 10 мегагерц, что делает возможным передачу таких радиосигналов на значительные расстояния.[источник не указан 2445 дней]
Несмотря на то что ионный состав слоя F зависит от солнечной активности, его способность отражать электромагнитные волны с частотой, меньшей 10 МГц, стабильна.
За открытие слоя F английскому физику Эдварду Виктору Эплтону в 1947 году была присуждена Нобелевская премия по физике.
История исследования
В 1901 году Гульельмо Маркони принял трансатлантический радиосигнал с помощью 152-метровой антенны в городе Сент-Джонс на острове Ньюфаундленд (сейчас является территорией Канады). Передающая станция в Корнуолл, Англия использовала очень мощный (в сто раз мощнее любого, существовавшего в то время) передатчик, испускавший радиоволны на частоте примерно 500 кГц.
Сообщение, которое принял Маркони, состояло из трех точек: обозначение азбуки Морзе для английской буквы S. До того, как сигнал достиг Ньюфаундленда, он дважды отразился от ионосферы. Несмотря на все сомнения и кривотолки, которые вызвал эксперимент Маркони, он успешно повторил его год спустя, приняв сигнал в заливе Глэйс, Новая Шотландия, Канада.
Английский физик Оливер Хэвисайд предположил наличие ионизированного слоя в атмосфере в 1902 году. Его теория включала в себя возможность распространения радиосигнала вокруг Земли, несмотря на её кривизну. Независимо от Хэвисайда эксперименты по дальнему приёму коротких волн через Атлантику между Европой и Америкой проводил американский инженер-электрик Артур Кеннели. Они предположили, что где-то вокруг Земли существует ионизированный слой атмосферы, способный отражать радиоволны. Его назвали слоем Хэвисайда — Кеннели, а затем — ионосферой. Возможно, именно предположения Хэвисайда и Кеннели вкупе с законом излучения абсолютно чёрного тела, выведенного Максом Планком, способствовала бурному развитию радиоастрономии с 1932 года (а также послужило отправной точкой при создании высокочастотных систем типа приемник — передатчик).
В 1926 году шотландский физик Роберт Уотсон-Ватт ввёл термин ионосфера в письме, опубликованном только в 1969 году в журнале Nature:
В 1947 году Эдвард В. Эплтон был удостоен Нобелевской премии по физике за подтверждения существования ионосферы в 1927 году с формулировкой «За исследования физики верхних слоёв атмосферы, в особенности за открытие так называемого слоя Эплтона»
Лойд Беркнер был первым, кто впервые измерил высоту и плотность ионосферы, что несомненно поспособствовало теории распространения коротких радиоволн. Морис Уилкс и Джон Рэтклифф исследовали распространение очень длинных радиоволн в ионосфере. Виталий Гинзбург разработал теорию распространения электромагнитных волн в плазме в частности в ионосфере.
В 1962 году был запущен канадский спутник Alouette-1 для изучения ионосферы. После его успеха также для измерения и исследования ионосферы были отправлены Alouette-2 в 1965 году и два спутника ISIS в 1969 и 1971 годах.
Изучение ионосферы
Этот слой атмосферы был обнаружен в начале 20 века учеными Е. Эпплтоном, М. Барнетом, Г. Брейтом и М. Тьювом. Они установили, что на высоте после 50 километров существует слой газов, отражающих радиоволны. За ним начали наблюдать. Было установлено, что ионосфера постоянно разная. Даже в течение дня ее состав и другие характеристики меняются. Разное количество газов также в завсимости от высоты. Поэтому ионосферу поделили на три слоя.
Но полное представление об особенностях этой части атмосферы человечество смогло получить только во второй половине 20 веке. Изучали ее с наземных ионосферных станций. Потом начали исследовать ее изнутри. Сначала ракеты, потом спутники поднялись в верхние слои атмосферы. И люди смогли понять, что такое ионосфера. Состав ее был изучен благодаря применению с ракет масс-спектрометра. Это также позволило измерить другие параметры:
- температуру;
- концентрацию ионов;
- электропроводность;
- источники ионизации;
- особенности жесткого солнечного излучения.
Исследуют ионосферу также с помощью радиометодов — изучения отраженных радиоволн. А в последнее время стали применяться спутники, на борту которых есть станции и зонды, исследующие ионосферу сверху. Это позволило составить представление о ее самом верхнем слое, недоступном для изучения с Земли.
Загрязнение атмосферы
Основная статья: Загрязнение атмосферы Земли
В последнее время на эволюцию атмосферы стал оказывать влияние человек. Результатом человеческой деятельности стал постоянный рост содержания в атмосфере углекислого газа из-за сжигания углеводородного топлива, накопленного в предыдущие геологические эпохи.
Громадные количества CO2{\displaystyle {\ce {CO2}}} потребляются при фотосинтезе и поглощаются мировым океаном. Этот газ поступает в атмосферу благодаря разложению карбонатных горных пород и органических веществ растительного и животного происхождения, а также вследствие вулканизма и производственной деятельности человека. За последние 100 лет содержание CO2{\displaystyle {\ce {CO2}}} в атмосфере возросло на 10 %, причём основная часть (360 млрд тонн) поступила в результате сжигания топлива. Если темпы роста сжигания топлива сохранятся, то в ближайшие 200—300 лет количество CO2{\displaystyle {\ce {CO2}}} в атмосфере удвоится и может привести к глобальным изменениям климата.
Сжигание топлива — основной источник и загрязняющих газов (CO{\displaystyle {\ce {CO}}}, NO{\displaystyle {\ce {NO}}}, SO2{\displaystyle {\ce {SO2}}}). Диоксид серы окисляется кислородом воздуха до SO3{\displaystyle {\ce {SO3}}}, а оксид азота до NO2{\displaystyle {\ce {NO2}}} в верхних слоях атмосферы, которые в свою очередь взаимодействуют с парами воды, а образующиеся при этом серная кислота H2SO4{\displaystyle {\ce {H2SO4}}} и азотная кислота HNO3{\displaystyle {\ce {HNO3}}} выпадают на поверхность Земли в виде так называемых кислотных дождей. Использование двигателей внутреннего сгорания приводит к значительному загрязнению атмосферы оксидами азота, углеводородами и соединениями свинца (тетраэтилсвинец Pb(CH3CH2)4{\displaystyle {\ce {Pb(CH3CH2)4}}}, его использование в бензине существенно снижено в последние десятилетия).
Аэрозольное загрязнение атмосферы обусловлено как естественными причинами (извержение вулканов, пыльные бури, унос капель морской воды и пыльцы растений и другое), так и хозяйственной деятельностью человека (добыча руд и строительных материалов, сжигание топлива, изготовление цемента и тому подобное). Интенсивный широкомасштабный вынос твёрдых частиц в атмосферу — одна из возможных причин изменений климата планеты.
черты
Экзосфера — это переходный слой между атмосферой Земли и межпланетным пространством. Он имеет очень интересные физические и химические характеристики и выполняет важные защитные функции планеты Земля..
поведение
Основная характеристика, которая определяет экзосферу, состоит в том, что она не ведет себя как газообразная жидкость, как внутренние слои атмосферы. Частицы, из которых он состоит, постоянно уходят в космос.
Поведение экзосферы является результатом набора отдельных молекул или атомов, которые следуют своей собственной траектории в земном гравитационном поле.
Свойства атмосферы
Свойства, которые определяют атмосферу: давление (P), плотность или концентрация составляющих газов (количество молекул / V, где V — объем), состав и температура (T). В каждом слое атмосферы эти четыре свойства варьируются.
Эти переменные не действуют независимо, но связаны законом газов:
P = d.R.T, где d = число молекул / V, а R — газовая постоянная.
Этот закон соблюдается, только если между молекулами, из которых состоит газ, достаточно ударов.
В нижних слоях атмосферы (тропосфере, стратосфере, мезосфере и термосфере) смесь газов, составляющих ее, может рассматриваться как газ или жидкость, которая может быть сжата, чья температура, давление и плотность связаны через закон газы.
Увеличивая высоту или расстояние до поверхности земли, давление и частота столкновений между молекулами газов значительно уменьшаются..
На высоте 600 км и выше этого уровня мы должны рассматривать атмосферу по-другому, поскольку она больше не ведет себя как газ или однородная жидкость.
Физическое состояние экзосферы: плазма
Физическое состояние экзосферы — это состояние плазмы, которое определяется как четвертое состояние агрегации или физическое состояние вещества..
Плазма — это состояние жидкости, где практически все атомы находятся в ионной форме, то есть все частицы имеют электрические заряды и присутствуют свободные электроны, не связанные с какой-либо молекулой или атомом. Его можно определить как жидкую среду частиц с положительными и отрицательными электрическими зарядами, электрически нейтральную.
Плазма имеет важные коллективные молекулярные эффекты, такие как ее реакция на магнитное поле, образуя структуры, такие как лучи, нити и двойные слои. Физическое состояние плазмы, как смеси в виде суспензии ионов и электронов, имеет свойство быть хорошим проводником электричества.
Это наиболее распространенное физическое состояние во вселенной, образующее межпланетную, межзвездную и межгалактическую плазму..
Физические свойства
Толщина атмосферы — примерно 120 км от поверхности Земли. Суммарная масса воздуха в атмосфере — (5,1—5,3)·1018 кг. Из них масса сухого воздуха составляет (5,1352 ±0,0003)·1018 кг, общая масса водяных паров в среднем равна 1,27·1016 кг.
Молярная масса чистого сухого воздуха составляет 28,966 г/моль, плотность воздуха у поверхности моря приблизительно равна 1,2 кг/м3. Давление при 0 °C на уровне моря составляет 101,325 кПа; критическая температура — −140,7 °C (~132,4 К); критическое давление — 3,7 МПа; Cp при 0 °C — 1,0048·103 Дж/(кг·К), Cv — 0,7159·103 Дж/(кг·К) (при 0 °C). Растворимость воздуха в воде (по массе) при 0 °C — 0,0036 %, при 25 °C — 0,0023 %.
За «нормальные условия» у поверхности Земли приняты: плотность 1,2 кг/м3, барометрическое давление 101,35 кПа, температура плюс 20 °C и относительная влажность 50 %. Эти условные показатели имеют чисто инженерное значение.