Не могу понять, как работает полный мост на ir2104

Отличия WG12864A и WG12864B

03.08.2012

Я уже писал об использовании графического дисплея WG12864A. Возникла необходимость применять более компактный дисплей WG12864B.
Казалось,WG12864A и WG12864B отличаются габаритами и последовательностью выводов (распиновкой). Однако, это не совсем так. Сразу дисплей WG12864B не заработал. Детальное исследование документации выявило отличие в логике работы. А именно в дисплее WG12864A сигналы CS1, CS2 считаются активными при логической 1. А у дисплея WG12864B CS1, CS2 считаются активными при логическом нуле.

В виду этого библиотека для работы с дисплеем WG12864 была доработана. Пример с новой библиотекой качайте здесь. В файле WG12864.h при использовании дисплея WG12864B следует включить строку #define WG12864B

Надеюсь эта информация кому то поможет сэкономить время.

Корисно знатиСхеми і прошивки

GPS. Расчет дистанции между двумя точками по GPS координатам. Расчет курса на точку.

29.04.2013

Читайте начало в статье GPS модуль EB-500 и ATMega

При использовании GPS модуля появилась необходимость вычислить расстояние от текущего положения до заданной точки. Фактически это вычисление расстояния по двум GPS координатам. Поскольку, в этом вопросе у меня было недостаточно знаний, пришлось немного почитать. Рекомендую для прочтения эти статьи:
Системы геодезических координат или «Что такое датум?»

Вычисление постоянного азимута и длины линии румба между двумя точками для геодезических координат
Сравнение расчетов длин и азимутов для разных способов вычисления

Даже если Вы не будете глубоко вникать в суть этих статей, это поможет Вам осознать суть некоторых проблем и получить ответы на большинство вопросов, связанных с точностью вычислений. В одной из этих статей приводится алгоритм, который и был адаптирован для библиотеки gps.c.

При вычислении применяются упрощения. Предполагается, что точки находятся на сфере с радиусом 6372795 метров. Следует понимать, что если точки находятся на разных высотах, то вычисленное расстояние будет отличаться от реального, поскольку разница высот не учитывается.

Корисно знатиСхеми і прошивки

Реаниматор ATMEG

18.06.2012

В очередной раз фьюзы зашились криво из-за глюкновшего программатора. Пришлось снова оживлять Atmeg-у. Здесь я писал, как я это делал
Как оживить Atmega8, Как реанимировать Atmega168

Достав из дальнего ящика свой гаджет, я понял, что надо его сделать более культурным и расширить сферу оживляемых МК. Поиск по инету вывел меня на эту статью:
http://www.rlocman.ru/shem/schematics.html?di=65084
Там же можно скачать схему, плату и прошивку.

Поскольку, DIP корпуса я не использую, сделал универсальную плату для TQFP корпусов. получилось примерно так:

Корисно знатиПочатківцямСхеми і прошивки‹4›

BMP085 — датчик абсолютного давления. Пдключаем к ATMEGA.

04.12.2012

BMP085 — датчик абсолютного атмосферного давления. Область применения: измерение давления для барометров, метеостанций и приборов, перемещающихся в атмосфере.

Ранее я писал о датчике атмосферного давления HP03

BMP085 привлекателен не только значительно более высокими характеристиками, и меньшей стоимостью, но и завидной стабильностью характеристик в отличие от китайского собрата.

Характеристики BMP085

— Пределы измерения абсолютного давления 30-110кПа (300-1100hPa) (-500…9000 метров над уровнем моря)
— Питание 1.8 — 3.6В (Vdda), 1.62 — 3.6В (Vddd)
— Размер корпуса: 5.0X5.0 мм.
— Низкий уровень шума:
0.06hPa (0.5м) в стандартном режиме
0.03hPa (0.25м) в режиме ультравысокого разрешения
0.1m возможно при применение программного фильтра.
— Интерфейс: I2C
— Разрешение: 0.01 hPa,  0.1 С

Датчик может работать в нескольких режимах:
— Режим пониженного энергопотребления
— Стандартный
— Режим высокого разрешения
— Режим ультравысокого разрешения.

Схеми і прошивки

Жгут проводов в салоне

Передний жгут проводов, расположенный в моторном отсеке, является основным в системе электрического обеспечения. В салон автомобиля передний пучок проходит через технологическое отверстие с уплотнителем под панелью приборов. Электрическая система передней части соединяется с проводами панели приборов, блоком предохранителей, переключателями и зажиганием. В этой части салона основные электрические цепи защищены предохранителями.

Новая коса обеспечит достаточное напряжение для питания потребителей тока в салоне

Блок предохранителей расположен слева от руля. За блоком на кронштейне закреплены вспомогательные реле. От исправного функционирования электрических приборов и реле зависит надёжная работа ВАЗ 2101. Плавкие предохранители защищают электрические цепи ВАЗ 2101 от короткого замыкания.

Простые предохранители являются надёжным элементом безопасности при коротком замыкании

Перечень электрических узлов, защищаемых предохранителями:

  1. Звуковой сигнал, лампы стоп-сигналов, плафоны внутри салона, прикуриватель, розетка переносной лампы (16 А).
  2. Электродвигатель отопления, реле стеклоочистителя, двигатель омывателя ветрового стекла (8 А).
  3. Дальний свет левой фары, контрольная лампа дальнего света (8 А).
  4. Дальний свет правой фары (8 А).
  5. Ближний свет левой фары (8 А).
  6. Ближний свет правой фары (8 А).
  7. Габаритный свет левого подфарника, габаритный свет правого заднего фонаря, контрольная лампа габаритов, лампа подсветки панели приборов, фонарь подсветки номерного знака, лампа освещения внутри багажника (8 А).
  8. Габаритный свет правого подфарника, габаритный свет левого заднего фонаря, лампа прикуривателя, лампа освещения моторного отсека (8 А).
  9. Датчик температуры охлаждающей жидкости, датчик уровня топлива и контрольная лампа резерва, лампа давления масла, лампа стояночного тормоза и указатель уровня тормозной жидкости, лампа уровня заряда аккумулятора, указатели поворотов и их контрольная лампа, фонарь освещения заднего хода, лампа вещевого отделения («бардачок») (8 А).
  10. Генератор (обмотка возбуждения), регулятор напряжения (8 А).

Видео: замена старого блока предохранителей ВАЗ 2101 на современный аналог

Коммутация приборов в салоне выполнена низковольтными проводами с эластичной масло— и бензостойкой изоляцией. Для облегчения поиска неисправностей изоляция проводов выполнена в разной цветовой гамме. Для большего различия на поверхность изоляции наносят спиральные и продольные полоски, чтобы исключить в жгутах наличие двух проводов одинаковой расцветки.

На рулевой колонке расположены контакты переключателей указателя поворотов, ближнего и дальнего света, звукового сигнала. В условиях сборочного цеха контакты этих переключателей смазаны специальной токопроводящей смазкой, удалять которую при ремонте запрещается. Смазка уменьшает трение и предотвращает окисление контактов и вероятное искрение.

При нарушении порядка подключения элементов вероятно дезинформирование участников движения

Номера позиций элементов электрической цепи на схеме подключения указателей поворота:

  1. Подфарники.
  2. Боковые указатели поворота.
  3. Аккумулятор.
  4. Генератор.
  5. Замок зажигания.
  6. Блок предохранителей.
  7. Реле-прерыватель.
  8. Сигнализатор включения.
  9. Переключатель.
  10. Задние фонари.

Прерывистый сигнал поворотников определяется реле-прерывателем. Соединение с «массой» обеспечивают провода чёрного цвета, соединения с «плюсом» — розовые или оранжевые провода. В салоне автомобиля провода соединяют:

  • панель приборов и подсветку индикаторов;
  • пучки фар;
  • указатели поворота;
  • освещение в салоне;
  • стеклоочиститель;
  • ножной омыватель ветрового стекла.

По левой стороне салоне под ковриками проходит задний жгут проводов. От него отходит нить к выключателю плафона в стойке двери и выключателю лампы стояночного тормоза. Ответвление к правому плафону проходит за задней балкой по полу кузова, там же расположены провода, соединяющие датчик указателя уровня и резерва топлива. Провода в пучке закреплены липкой лентой к полу.

MAX1555. USB зарядное для Li-Po аккумулятора.

23.06.2012

Аккумулятор литий-ионный — штука не новая и о способах его зарядки сказано много. Я опишу практический пример заряда однобаночного (3,7В) Li-Po аккумулятора, используя питание USB-разъема. Зарядка через USB — это наиболее удобный способ для мобильных устройств и приборов.

Но, перед тем как описать схему зарядного устройства, рассмотрим сами аккумуляторы. Существуют простые аккумуляторы, вроде таких:

И аккумуляторы со встроенным контроллером заряда. Выполнен контроллер в виде крохотной платы, припаянной к выводам аккумулятора

Обратите внимание, такие аккумуляторы обычно имеют контакты в виде проводов

Действительно — это же логично: снабдить аккумулятор контроллером заряда. Пусть чуть дороже, но на сколько меньше хлопот. Но что кроется под этим названием: «контроллер заряда»?

Схеми і прошивки

Драйверы MOSFET ключей

Да, в этом случае в качестве драйверов выступают биполярные транзисторы. Это также допустимо. Есть также схемы, где в качестве верхних ключей используются транзисторы с P-каналом, в качестве нижних — с N-каналом. То есть, используется два типа транзисторов, что не всегда удобно. К тому же P-канальные транзисторы большой мощности почти невозможно найти. Обычно использование такое сочетание транзисторов с различными каналами применяют в маломощных контроллерах для упрощения схемы.

Использовать однотипные транзисторы, обычно только N-канальные, значительно удобнее, однако это требует соблюдения некоторых требований по управления верхними транзисторами моста. Напряжение на затвор транзисторов надо подавать относительно их истоков (Source). В случае нижнего ключа вопросов не возникает, его виток (Source) присоединен к земле и мы можем спокойно подавать напряжение на затвор нижнего транзистора относительно земли. В случае верхнего транзистора все несколько сложнее, поскольку напряжение на его истоке (Source) изменяется относительно земли.

Объясню. Представим, что верхний транзистор открыт, через него протекает ток. В таком состоянии на транзисторе падает достаточно малое напряжение и можно сказать, что напряжение на истоке Source верхнего транзистора практически равно напряжению питания двигателя. Кстати, чтобы удерживать верхний транзистор открытым, нужно подать на его затвор напряжение, выше напряжение на его истоке (Source), то есть — выше напряжение питания двигателя.

Если верхний транзистор закрыт, а нижний открыт, то на истоке (Source) верхнего транзистора напряжение достигает практически нулю.

Драйвер верхнего ключа обеспечивает подачу на затвор полевого транзистора необходимое напряжение относительно его истоков (Source), и обеспечивает генерацию напряжения, большей по напряжение питания двигателя для управления транзистором. Этим, и не только этим, занимаются драйверы MOSFET ключей.

Схема вариометра альтиметра барометрического

28.01.2013

AVIS-4– модуль с дисплеем для самостоятельной сборки простого цифрового барометрического вариометра — альтиметра. Требует подключения внешних элементов: три кнопки управления, батареи питания с выключателем. Питание прибора 1,2…3,0 В.Для питания прибора рекомендуется применять две батареи АА или ААА номинальным напряжением 1,5 В.

-Альтиметр -700…9000 м, шаг 1 м
-Вариометр -20 м/с … +20 м/с, шаг 0,1 м/с
-Таймер времени полета (мах. 12 ч)
-Термометр -20…+60 oС
-Запоминает параметры крайнего полета (продолжительность полета, max/min высота, max/min скороподъемность)
-Более 200 часов работы от двух алкалайновых батарей ААА

Схеми і прошивки

Емкостной датчик уровня топлива на ATMega8A

25.09.2012

Знать уровень топлива в баке не только «прикольно», но иногда жизненно необходимо. В некоторых случаях затруднительно оценить уровень топлива в баке из-за его расположения или недостаточной прозрачности. Для таких случаев и существуют датчики уровня топлива. На сегодняшний день наиболее распространены поплавковые датчики. Принцип работы таких датчиков достаточно прост. Поплавковый механизм в зависимости от уровня топлива в баке изменяет положение подвижного контакта потенциометра. Показание напряжения на потенциометре измеряются и преобразуются в человекочитаемый вид. Однако не всегда имеется возможность установить поплавковый датчик из-за его габаритов. Кроме того, в аппаратах, где крен является нормальным состоянием, например, сверхлегкие летательные аппараты, возможен перекос и подклинивание поплавкового механизма. Кроме того, положение бака в наземном и полетном положении может отличаться, что может внести изменения в работу поплавкового механизма. Однако существуют и другие способы измерения уровня топлива. Я говорю о емкостном датчике топлива. Он особо актуален, если существует необходимость избавится от подвижных частей.

Схеми і прошивки

Расчет резисторов в цепи затвора

http://integral.rv.ua/IR17.htm

Я выработал для себя такое правило: сопротивление резистора в цепи затвора полевого транзистора должен быть не менее, чем внутреннее сопротивление драйвера, разделен на 3 Например, драйвер IR2101 питается напряжением 12В, максимальный ток — 0,25А. Его внутреннее сопротивление: 12В / 0,25 = 48Ом. В данном случае резистор в цепи затвора полевого транзистора должно быть больше, чем 48/3 = 16 Ом. Если время переключения транзисторов с выбранными резисторами не устраивает, следует выбрать более мощный драйвер.

Я не могу назвать эту методику идеальной, но она проверена практикой. Если кто сможет прояснить этот момент — буду благодарен.

Иногда к цепи затвора транзистора добавляют диода с резистором или без.

Это делается для того, чтобы увеличить скорость закрывания ключа. Для того чтобы защитить транзистор от чрезмерного напряжения Vgs иногда используют стабилитроны присоединены к затвору (Gate) и истоком (Sources) транзистора. Перед тем как использовать стабилитрон, выясните какая у него емкость. Обычные стабилитроны могут иметь существенную паразитную емкость, может значительно ухудшить ситуацию с временем открытия транзистора.

Выбор драйвера и их многообразие

IR2101, IR2010, IR2106, IR21064, IR2181, IR2110, IR2113VgsVgs=20ВVgsVgs

Большинство драйверов питаются напряжением 10-20В и поддерживают входные сигналы различных уровней -3.3В, 5В, 15В.

Существуют драйверы для трехфазных мостовых схем, например:
IR3230, IRS2334, IRS2334, IR21363, IR21364, IR21365, IR21368, IRS2336, IRS23364D, IRS2336D, IRS26310DJ, IR2130, IR2131, IR2132, IR2133, IR2135, IR2136, IRS2330, IRS2330D, IRS2332, IRS2332D, IR2233, IR2235, IR2238Q, IRS26302DJ.
Такие драйверы ключей могут стать самым подходящим вариантом. К тому же в некоторых трехфазных драйверах есть дополнительная возможность для обеспечения защиты ключей от слишком большого тока и т.п. Довольно интересная серия драйверов IRS233x (D). Она обеспечивает широкий спектр защит, в том числе защиту от негативных скачков напряжения, защита от короткого замыкания, от перегрузки, защита от снижения напряжения в шине, от снижения напряжения питания, защита от перекрестного включения.

Один из важнейших показателей драйверов — это максимальный выходной ток. Обычно от 200мА до 4000мА. Может показаться что 4 Ампера — это слишком. Но все решает калькулятор. Как отмечалось выше скорость переключения ключей — очень важная вещь. Чем мощнее драйвер, тем меньше времени тратится на переключение ключей. Примерно рассчитать время переключения ключей можно по формуле:

ton = Qg*(Rh+R+Rg)/U

Где:
Qg – полный заряд затвора полевого транзистора;
Rh – внутреннее сопротивление драйвера. Рассчитывается как U/Imax, где U — напряжение питания драйвера, Imax — максимальной выходной ток

Обратите внимание, что максимальной выходной ток может быть различным для верхнего и нижнего транзистора;
R – сопротивление резистора в цепи затвора;
Rg – внутреннее сопротивление затвора транзистор;
U – напряжение питания драйвера

Например, если мы используем транзистор irfp4468pbf и драйвер IR2101 с максимальным током 200мА. А в цепи затвора резистор 20 Ом, тогда время переключения транзистора:

540*(12/0.2 + 20 + 0.8)/12 = 3636 нС

Заменив драйвер на IR2010, с максимальным током — 3А, и резистором в цепи затвора — 2ом, получим такое время переключения:

540*(12/3+2+0.8)/12 = 306 нС

То есть, с новым драйвером время переключения сократился более чем в 10 раз. Так что и тепловые потери на транзисторах значительно уменьшатся.

Датчики тока

Allegro MicroSystemsACS71XACS75X

Кроме обычного измерения уровня тока микроконтроллером, разумно создать схему аппаратной защиты от превышения критического уровня тока. Для измерения уровня тока микроконтроллер тратит некоторое время. Кроме того, ток измеряют периодически через некоторое время. Такие задержки, а также возможные программные ошибки могут создать ситуацию, когда критический ток успевает вывести из строя устройство еще до того, как придет момент следующего измерения. Схема должна отключать силовые ключи когда ток превышает критическое значение, независимо от работы микроконтроллера. Для реализации такой схемы обычно используют компаратор, на вход которого подают сигнал с датчика тока и опорный сигнал. При превышении допустимого тока компаратор срабатывает. Выход компаратора используют как дискретный сигнал в логических схемах, аварийно отключают ключи. Такая реализация имеет наименьшую задержку.

Некоторые драйверы имеют дополнительный вход для аварийного отключения ключей, что значительно упрощает создание безопасной схемы регулятора (ESC) безколесторного двигателя (BLDC).

Успехов!

P.S. Этой публикацией я завершаю цикла статей о трехфазные бесколлекторных двигателях, которого начал год назад. Это не означает, что больше не будет ни слова о бесколлекторных двигателях. Статьи об электродвигателях еще будут, но это будут отдельные материалы, конкретные реализации и т.д. Надеюсь, что моя работа не была напрасной.

Статьи по бесколлекторным моторам:

  • Что такое Бесколлекторный мотор?
  • Устройство бесколлекторного мотора
  • Как управлять бесколлекторным мотором с датчиками Холла (Sensored brushless motors)
  • Как управлять бесколекторным мотором без датчиков (Sensorless BLDC)
  • Запуск бездатчикового бесколекторного мотора (Sensorless BLDC)
  • Определение положения ротора бесколлекторника в остановленном состоянии
  • Контроллер бесколлекторного мотора. Структура ESC
  • Схема контроллера бесколлекторного мотора (ESC)
  • Силовая часть контроллера бесколлекторного мотора
  • Литература по бесколлекторнм моторам
  • Примеры на С для управления бесколлекторными моторами
  • Схема контроллера бесколлекторного мотора BLDC, PMSM на микроконтроллере STM32
  • STM32. Управление бесколлекторным мотором (BLDC)
  • STM32. Пример регулятора для бесколлекторного PMSM
  • Видео о бесколлекторных моторах. BLDC, PMSM, векторное управление
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector