Усилитель мощности jlh
Содержание:
- Регулировка выходного напряжения.
- Собираем усилитель JLH1969
- Стабильность, мощность и сопротивление нагрузки.
- ↑ Исходная схема JLH
- Результаты.
- Китайский клон JLH1969
- Регулировка тока покоя выходного каскада усилителя.
- Влияние входного и выходного конденсаторов на АЧХ нашего усилителя
- Вариации на тему.
- Камрад, рассмотри датагорские рекомендации
- ↑ Требования к усилителю
- Письма редактору.
- Звук
- Конструкция усилителя.
- Принцип работы
- Принципиальная схема.
- Особенности
- Выводы
Регулировка выходного напряжения.
Использовать интегральные стабилизаторы для регулировки нулевого выходного напряжения (при двухполярном питании) было не самой лучшей идеей. Во-первых, такие стабилизаторы имеют довольно высокий уровень собственных шумов (которые абсолютно лишние в первом каскаде!), во-вторых, как показала практика, микросхемы некоторых фирм-изготовителей имеют свойство возбуждаться при работе с малыми токами.
Поэтому в модификации 2003 года Тим заменил интегральный стабилизатор на активный источник тока (Q5 / Q6). И помимо снижения уровня шума получил ещё один интересный эффект — значительно снизился дрейф выходного напряжения при прогреве усилителя.
Собираем усилитель JLH1969
Какие параметры мы выбрали для нагрузки 4 Ом:
- Питание усилителя классическое с использованием трансформатора, без стабилизации, питание раздельное на каждую плату, 19 Вольт с отдельных обмоток трансформатора;
- Ток покоя: 1.3А;
- Входной конденсатор: 1 мФ;
- Выходной конденсатор: 6900 мФ.
Почему не использовался импульсный блок питания? Мы решили проверить, каких параметров можно добиться при использовании классического питания. В дальнейшем мы соберем еще одну версию с импульсным блоком.
Трансформатор:
- Тип трансформатора: тороидальный
- Напряжение питания: 220В;
- 2 Выхода по 15В (6А);
- 2 Выхода по 9В (1А).
Чтобы знать, какое примерно напряжение будет на выходе после выпрямителя, умножьте его на 1.4(например 15*1.4=21).
В выпрямителе на каждый канал мы использовали по два конденсатора с напряжением 25В и ёмкостью 33000 мкФ. Для улучшения фильтрации мы также использовали CRC фильтр, поставив между конденсаторами резистор на 0.5 Ом.
Перед входом на плату выпрямителя рекомендуем поставить предохранители. Также можно зашунтировать конденсаторы ёмкостью 0.047 кмФ, поставив их параллельно выводам конденсаторов на 33000 мкФ.
Часто, при борьбе с фоном, начинающие радиолюбители забывают, что наводки можно уменьшить, изменив положение трансформатора.
Для уменьшения помех от трансформатора мы выставим такое положение, вращая его, при котором будет наименьшее количеством помех. А также накроем его металлической крышкой толщиной 1мм.
Стабильность, мощность и сопротивление нагрузки.
Кремниевые планарные NPN транзисторы обладают отличными высокочастотными свойствами (напомним, что это пишет человек в 1969 года про транзисторы с граничной частотой усиления в 4 МГц!), что способствует хорошей стабильности при работе на реактивную нагрузку. Автору не удалось найти комбинацию значений емкости и индуктивности для нагрузки, которые бы привели к возбуждению усилителя. Чисто индуктивная нагрузка может стать причиной неустойчивости усилителя, для устранения которой, достаточно зашунтировать резистор R3 конденсатором небольшой ёмкости, чтобы ограничить полосу частот на ВЧ.
Схема усилителя с указанными значениями номиналов элементов может без проблем работать с нагрузкой сопротивлением от 3 до 15 Ом. Тем не менее, для получения максимальной эффективности имеет смысл подобрать некоторые элементы под конкретное сопротивление нагрузки. В этом поможет таблица:
По таблице вы можете в зависимости от сопротивления нагрузки (ZL) определить необходимые напряжение питания и ток покоя, номиналы элементов, а так же чувствительность усилителя (Vin).
На каждом транзисторе выходного каскада рассеивается мощность порядка 17Вт. Чтобы температурный режим транзисторов не выход за безопасные пределы, их необходимо установить на ребристые радиаторы с достаточной площадью охлаждающей поверхности. Да, это будут довольно большие и массивные радиаторы. Такова плата за класс «А», простоту схемы и высокое качество звучания.
При напряжении питания от 30В и выше выходные транзисторы TR1 и TR2 следует заменить на MJ481s , а транзистор ТR3 на 2N1613.
Выходное сопротивление предварительного усилителя, используемого совместно с усилителем мощности JLH не должно превышать несколько килоОм, иначе потребуются дополнительные каскады для согласования, что удлинит усилительный тракт и увеличит искажения.
↑ Исходная схема JLH
схеме усилителя для наушников, размещенной на сайте, посвященном схемотехнике усилителей Джона Линсли Худа
Рис. 5 Оригинальная схема усилителя для наушников JLH
Во – первыхВо – вторыхВ – третьих
Технические характеристики усилителя: Рекомендуемая нагрузка — минимум 8 Ом, номинальная 32 Ом и выше;Частотный диапазон: 12 Гц-50 кГц (0/-1 дБ); 12 Гц-120 кГц (0/-3 дБ);Коэффициент усиления: 21 дБ; Соотношение сигнал/шум: 101 дБ; Скорость нарастания сигнала: более 35 В/мкс; Напряжение питания (AC): ± 12 В; Потребляемый ток: 260 мА; Ток покоя каждого канала усилителя: 125 мАРазмеры печатной платы: 122х108 мм.
Результаты.
Я всё же предпочитаю принимать во внимание результаты измерений (особенно спектров), нежели полагаться на субъективные особенности слухового восприятия экспертов, участвующих в тестах и прослушивании усилителя. Проведенные измерения показали искажения усилителя менее 0,1% на границе клиппирования
При уменьшении выходной мощности искажения уменьшались вплоть до полного маскирования шумами измерительной аппаратуры. В спектре искажений доминирует вторая гармоника. Подобные результаты служат для меня более чем убедительными доказательствами высокого качества усилителя, лучше мнения самого «ушастого» эксперта
Проведенные измерения показали искажения усилителя менее 0,1% на границе клиппирования. При уменьшении выходной мощности искажения уменьшались вплоть до полного маскирования шумами измерительной аппаратуры. В спектре искажений доминирует вторая гармоника. Подобные результаты служат для меня более чем убедительными доказательствами высокого качества усилителя, лучше мнения самого «ушастого» эксперта.
А если учесть высокую стабильность схемы при испытании меандром, отсутствие переходных процессов и выбросов на прямоугольных импульсах при любой реактивной нагрузке без цепей высокочастотной коррекции, то «слуховые тесты» кажутся абсолютно лишними.
Последним доводом «за» повторение этой конструкции должен послужить для вас тот факт, что при практически идентичном звучании с высококачественными и дорогими ламповыми усилителями данный усилитель отличается простотой, доступностью и низкой стоимостью используемой элементной базы. Затраты на его сборку составляют лишь десятую часть от стоимости элементов для хорошего лампового усилителя.
В своих статьях Джон Линсли Худ постоянно сравнивает свой транзисторный усилитель класса «А» с ламповым усилителем Williamson. Для него он является эталоном звучания и эталоном в ламповой схемотехнике. Чтобы было понятно, о чём идёт речь: это ламповый двухтактный усилитель, охваченный цепью общей отрицательной обратной связи, с кенотронным блоком питания. Выходные лампы KT-66 по конструкции и характеристикам были относительно революционны для своего времени. На рисунке представлена принципиальная схема усилителя:
Продолжение следует…
Китайский клон JLH1969
На данный момент на алиэкспресс существует клон этой схемы, которую можно заказать, как и в виде kit набора, так и уже собранную.
Мы заказали китайскую версию, поскольку не у всех есть возможность изготавливать платы самостоятельно. Сегодня мы посмотрим, как хорошо она звучит.
Собрать схему очень просто, так как плата сделана очень качественно. Выходные транзисторы 2N3055 непонятного происхождения, но мы пока оставим всё как есть и протестируем собранную плату.
Поскольку А класс имеет низкое КПД и требует хорошее охлаждение, мы будем использовать достаточно большие радиаторы.
А вот китайская схема. Резистором R1 мы настраиваем половину напряжения питания в контрольной точке A. Затем, резистором R2 выставляем ток покоя транзисторов. Красным крестиком на схеме указано место, в разрыв которого нужно подключать амперметр для измерения тока покоя.
Ток покоя необходимо выставлять после 15-минутной работы платы, когда она достаточно нагрелась.
На плате это выглядит так:
Напряжение питания — 24 вольт. Для начала мы выставили ток покоя 1.2A , затем половину напряжения питания между минусом и точкой А. (24/2=12) Затем замеряли температуру транзисторов во время работы. Транзисторы не нагревались выше 60 -70 градусов, это их нормальный режим. Если температура будет выше 70 градусов, нужно увеличить площадь радиатора.
Дальше мы сделаем свой блок питания. Питание будет раздельное. У нас 4 обмотки на трансформаторе, две из них будут использоваться для питания наших плат усилителя.
На каждый канал используется свой выпрямитель, номиналы конденсаторов — 2×15000 мкФ. В дальнейшем, если потребуется, мы увеличим их ёмкость. Стабилизатор мы не будем использовать, поскольку усилитель и так будет выделять много тепла.
Давайте послушаем, как звучит наш собранный усилитель. Напряжение питания и ток покоя мы выбрали самые распространенные среди пользователей, в дальнейшем мы их откорректируем.
Звук получился очень приятный и чем-то похож на ламповый. В музыке немного не хватает низов, но с высокими и средними частотами все в порядке.
После часового прослушивания нам пришлось приклеить к диодным мостам радиаторы, поскольку первые очень сильно нагревались (до 80 градусов). Транзисторы нагрелись до 70.
Теперь посмотрим какие у нас получились характеристики усилителя.
Общие результаты
АЧХ у нас немного завалена на низких частотах. Это не критично, но дальше мы расскажем, как это исправить.
На графике гармонических искажений преобладает вторая гармоника, которая и создает так называемый «ламповый звук».
Подробный тест нашей платы JLH1969 смотрите здесь
Регулировка тока покоя выходного каскада усилителя.
На форумах часто писали, что усилитель с вариантом регулировки тока покоя выходного каскада версии 1969 года звучит лучше, чем с вариантом 1996 года. В симуляторе искажения тоже были меньше для варианта 1969 года! В результате многократных прослушиваний и измерений Тим выяснил, что версия 1996 года всё же звучит лучше.
Джон предложил Тиму организовать регулировку тока покоя так же с помощью активного источника тока (Q7 / Q8). Кроме того, что смоделированные искажения для такого варианта были в два раза ниже, чем для схемы 1996 года, так ещё отсутствовал рост искажений на низких частотах из-за влияния конденсатора. В дополнение выросла выходная мощность усилителя, так как с такой доработкой увеличился размах выходного напряжения.
Тим реализовал предложенную доработку и после прослушивания согласился, что второй источник тока также весьма полезное усовершенствование.
Влияние входного и выходного конденсаторов на АЧХ нашего усилителя
Замеряем АЧХ нашей платы. На входе: конденсатор 1 мкФ, на выходе: 2200 мкФ.
Если посмотреть график внизу, на АЧХ (частотную характеристику) нашего усилителя, то можно заметить завал на низких частотах, начиная от 100 Гц и ниже. А также небольшой завал на высоких частотах (от 10 кГц и выше). По высоким частотам этот завал совсем незначительный, поэтому мы его трогать не будем. А вот низких частот нужно немного добавить.
Часто начинающие пользователи методом научного тыка добавляют конденсаторы в усилитель. Иногда им везет, а иногда нет.
Для начала обратим внимание на рекомендации автора:
На нашей собранной плате выходной конденсатор имеет ёмкость 2200 мкФ, входной — 1 мкФ. Нагрузка у нас 4 Ом. На схеме Худа входной конденсатор — 0.5 мкФ, а выходной — 5000 мкФ. Частенько любители увеличивают входной конденсатор для выравнивания АЧХ. Но на самом деле нужно увеличить ёмкость выходного.
Сейчас мы добавим по очереди конденсаторы и будем замерять АЧХ.
1. Добавляем входной конденсатор 3.3 мкФ параллельно 1 мкФ = 4.3 мкФ:
На входе 4.3 мкФ на выходе 2200 мкФ
Видно, что практически ничего не поменялось на нашем графике, поэтому конденсатор мы пока выпаяем.
2. Теперь добавим параллельно выходному конденсатору 2200 мкФ ещё на 4700 мкФ и смотрим график:
На входе 1 мкФ на выходе 6900 мкФ
Как видим, наша АЧХ стала лучше на низких частотах и этого вполне достаточно для комфортного прослушивания музыки.
3. Но нам этого, конечно же, мало. Мы хотим ещё, поэтому добавим ещё 4700 мкФ к нашим конденсаторам:
На входе 1 мкФ на выходе 11600 мкФ
АЧХ ещё немного выровнялась, но это незначительно.
4. Давайте вернем наш конденсатор на вход, видно еще небольшое выравнивание АЧХ. Получилась такая картинка:
На входе 4.3 мкФ на выходе 11600 мкФ
Посмотрев на график, вы можете выбрать вариант, который вам подойдет для 4 Ом. Если же у вас акустика 8 Ом, просто делите емкость конденсаторов на 2.
Для себя мы оставим 2 вариант, этого достаточно для нашего усилителя. То есть, на входе — 1 мкФ а на выходе — 2200+4700 мкФ.
Вариации на тему.
Наш рассказ будет не полным, если не упомянуть его различные клоны. Разумеется, были попытки сделать тоже самое на полевых транзисторах. И занимался этим небезызвестный Нельсон Пасс.
На рисунке представлена топология его усилителя, который он назвал PLH (полевой Линсли Худ):
Принципиальная схема усилителя мощности PLH:
При той же выходной мощности, по уверениям автора, этот усилитель имеет вчетверо лучшую линейность, чем усилитель JLH, при примерно таком же выходном сопротивлении и гораздо меньшей глубине общей отрицательной обратной связи, что обеспечивает ещё более качественное и натуральное звучание.
Также в Интернете обсуждаются, повторяются, а на АлиЭкспрессе продаются как в виде наборов, так и в виде готовых конструкций усилители JLH для наушников.
Версий много, для примера приведём такую:
Увеличение по клику
Как видим, китайцы поставили на поток схему 1996 года, немного изменив цепи смещения первого каскада. Да и номиналы некоторых элементов вызывают вопросы…
На этом историю развития усилителя мощности JLH мы заканчиваем, но точку не ставим — популярность схемы не ослабевает. В следующий раз поговорим о блоке питания для усилителя мощности JLH.
Камрад, рассмотри датагорские рекомендации
Внимание! 800 рублей для новичков на Aliexpress Регистрируйтесь по нашей ссылке. Если вы впервые на Aliexpress — получите 800.00₽ купонами на свой первый заказ.. Цифровой осциллограф DSO138
Кит для сборки
Цифровой осциллограф DSO138. Кит для сборки
Функциональный генератор. Кит для сборки
Настраиваемый держатель для удобной пайки печатных плат
Владимир Мосягин (MVV)
Россия, Великий Новгород
Список всех статей
Профиль MVV
Радиолюбительством увлекся с пятого класса средней школы.Специальность по диплому — радиоинженер, к.т.н.Автор книг «Юному радиолюбителю для прочтения с паяльником», «Секреты радиолюбительского мастерства», соавтор серии книг «Для прочтения с паяльником» в издательстве «СОЛОН-Пресс», имею публикации в журналах «Радио», «Приборы и техника эксперимента» и др.
↑ Требования к усилителю
Рис. 1. Схемы подключения наушников к усилителю мощности звуковой частоты: а) простейшая, с гасящим резистором; б) с делителем напряжения; в) универсальная, для подключения телефонов с различным сопротивлением
Недостаточный коэффициент демпфирования приводит к подчеркиванию паразитных резонансов в области низких частот, искажению амплитудно-частотной характеристики как в области наибольшей чувствительности слуха (1…5 кГц), так и на высоких частотах. При подключении по схеме резистивного делителя можно разочароваться в любых стереотелефонах, даже с великолепными техническими характеристиками!
Существуют три основных разновидности искажений в выходном каскаде:Класс А устраняет первые два из трех основных механизмов возникновения искажений. В самом деле, в выходном каскаде, работающем в классе А, ток непрерывно протекает через выходные транзисторы на протяжении всего периода сигнала, и на всем участке транзисторы не выключаются, поэтому переходные искажения и искажения переключения принципиально невозможны.Рассеиваемая каскадом мощность остается постоянной независимо от уровня сигнала, поскольку напряжение питания и ток покоя не изменяются.
Письма редактору.
Последние измерения усилителя JLH показали, что полоса частот шире, чем было указано в публикации. Спад усиления на частоте 100 кГц был вызван недостатками измерительного оборудования. При использовании более современных приборов выяснилось, что АЧХ по уровню -3 дБ имеет спад на частоте 1,5 МГц, а выходная мощность начинает падать на частотах выше 200 кГц.
Следует обратить внимание на то, что усилитель является неинвертирующим! Поэтому необходимо максимально далеко разнести друг от друга вход и выход усилителя для устранения паразитных связей и наводок, что может снизить устойчивость усилителя. Если ёмкостная нагрузка подключается к усилителю короткими проводами, это может привести к нарушению стабильности на высоких частотах. Для исключения таких побочных нежелательных явлений достаточно между точкой «Х» (см
оригинальную схему) и выходным конденсатором С2 включить небольшой дроссель: 25 витков толстого медного провода намотать на резисторе номиналом 10 Ом и мощностью 1 Вт. Но это редкий случай — на практике акустические системы чаще всего подключаются к усилителю довольно длинным кабелем и его индуктивности вполне хватает, чтобы предотвратить возбуждение усилителя
Если ёмкостная нагрузка подключается к усилителю короткими проводами, это может привести к нарушению стабильности на высоких частотах. Для исключения таких побочных нежелательных явлений достаточно между точкой «Х» (см. оригинальную схему) и выходным конденсатором С2 включить небольшой дроссель: 25 витков толстого медного провода намотать на резисторе номиналом 10 Ом и мощностью 1 Вт. Но это редкий случай — на практике акустические системы чаще всего подключаются к усилителю довольно длинным кабелем и его индуктивности вполне хватает, чтобы предотвратить возбуждение усилителя.
Другой способ повысить устойчивость усилителя это ограничить полосу воспроизводимых частот выше 50 кГц со спадом в 6 дБ. Испытания на макете показали что такая доработка не влияет на коэффициент искажений усилителя и не отражается на качестве звучания.
Доработка заключается в установке дополнительных конденсаторов ёмкостью 1000 пкФ между коллектором транзистора Tr3 и эмиттером TR4, RC-цепи между базой TR3 и землёй, а также цепи Цобеля на выходе усилителя. Схема со всеми дополнительными элементами представлена на рисунке.
При такой доработке дроссель на выходе усилителя не нужен.
Также была проведена серия экспериментов с усилителем по оригинальной схеме (без указанных выше доработок). На вход подавались прямоугольные импульсы (меандр). При этом на выходе усилителя, при подключении различных акустических систем, сигнал был такой же как и на чисто резистивной нагрузке на частотах вплоть до 1 МГц (предел применяемого генератора). Сигнал на выходе был идентичен входному, то есть отсутствие выбросов и «звона» говорит о высоком быстродействии и отличной устойчивости усилителя.
Один из читателей сообщил, что успешно построил и испытал усилитель JLH с выходной мощностью 15 Вт на нагрузке 15 Ом, чтобы получить полный эквивалент усилителя Williamson для сравнительных тестов. Он использовал выходные транзисторы 2N3055, напряжение питания пришлось поднять до 43В, при этом ток покоя составил 1,1А на канал. Площадь радиаторов выходных транзисторов он увеличил практически вдвое.
Звук
Поскольку данный текст является частью большого цикла публикаций, посвященного различным типам усилителей, в процессе его подготовки было проведено одно большое сравнительное прослушивание, в котором участвовали усилители различных классов. Для придания прослушиванию достаточной степени объективности было выбрано две модели напольных колонок.
Одна из них была заведомо тяжелой нагрузкой с низкой чувствительностью — крупным тугим басовиком, и требовала высокой подводимой мощности. Вторая же была призвана стать обратной стороной медали: предельно легкой нагрузкой, способной сработаться с любым, даже маломощным усилителем. И во всех случаях эта схема тестирования была вполне рабочей до того момента пока на сцене не появился Octave V16 Single Ended с его 8 Вт на канал.
На тяжелой нагрузке искажения были столь реальны, что их, казалось, можно было потрогать, а нагрузка, ранее известная как легкая, успешно справилась с ролью тяжелой. За неимением под рукой еще одной пары колонок мощностью в несколько ватт и с чувствительностью выше 100 дБ роль легкой нагрузки выполнили наушники.
С колонками, которым по паспорту требуется не менее 25 Вт, Octave V16 Single Ended сработался на удивление неплохо. Если не злоупотреблять громкостью, можно в полной мере оценить живой, открытый и чистый звук, который на спокойных аудиофильских записях просто превосходен.
Ситуация осложняется, когда дело доходит до более динамичной музыки, а на рок-композициях усилитель с удовольствием сваливает звучание гитар в кашу, давая в качестве бонуса вполне различимую на слух компрессию. Спасает лишь тот факт, что компрессия и искажения в исполнении ламп в отличие от транзисторов придает звучанию довольно приятную окрашенность.
Если же попытаться уменьшить нагрузку на усилитель, понизить громкость, а затем подсесть поближе, чтобы не потерять в звуковом давлении — картина исправляется. И грязи нет, и деталей больше, и компрессия не ощущается. Здесь я замечу, что по габаритам этот усилитель совсем небольшой, его можно поставить не только в стойку, но даже на стол, для использования с наушниками и полочными мониторами ближнего поля.
В полной мере прочувствовать принадлежность усилителя к категории High End удалось в наушниках. Совершенно сумасшедшая детальность, открытое, объемное и тембрально богатое звучание, управляемый и четкий бас — все то, о чем можно мечтать. И, что характерно, даже на быстрой тяжелой музыке усилитель начал вести себя достойно. Никакой вальяжности, никакой каши, никакой гулкости в НЧ-диапазоне. Вот что значит — обеспечить усилителю класса А оптимальный режим работы.
Конструкция усилителя.
Как написал один радиолюбитель, повторивший эту конструкцию, в этом усилителе греется ВСЁ! Начиная с трансформатора и диодов блока питания и заканчивая выходными транзисторами. Поэтому, при повторении данного усилителя мощности необходимо обеспечить эффективный теплоотвод от элементов конструкции. То есть обязательно придётся использовать радиаторы соответствующих (внушительных) размеров, внутри корпуса обеспечить циркуляцию воздуха для чего в корпусе следует предусмотреть вентиляционные отверстия.
Использовать такой усилитель в небольших комнатах, особенно в жару, следует с осторожностью ввиду возможного перегрева. Рекомендуется применять устройства тепловой защиты. При невозможности обеспечить достаточно эффективное пассивное охлаждение нужно использовать дополнительный обдув. Особенно это касается любителей задрать ток покоя
Настоятельно рекомендуется при монтаже элементов к радиатору не использовать силиконовые прокладки. Только тонкая слюда или керамика. По отзывам того же радиолюбителя нормальная температура корпуса прогретого усилителя JLH составляет около 60°С (внутри около 55°С). Так что слушать музыку в знойные летние дни…
Принцип работы
Из самого обозначения класса АВ нетрудно сделать вывод, что данный режим является гибридом класса А и класса В. Как работают усилители класса А, мы уже разобрались, а с классом В ознакомиться не успели, поэтому начнем с него. И для начала вспомним логику, которой руководствовался создатель усилителя класса А. Для того, чтобы получить возможность воспроизводить и положительную, и отрицательную полуволну с помощью одного активного элемента, он применил смещение средней точки (тока покоя) в середину рабочей зоны лампы.
Создатели усилителей класса В рассуждали по-другому: «Если одна лампа или один транзистор с нулевым смещением способен воспроизвести только одну полуволну сигнала, почему бы не добавить в схему еще один активный элемент, разместив его зеркально, чтобы воспроизводить другую полуволну?».
Это вполне логично, ведь при таком раскладе оба транзистора работают с нулевым смещением. Пока на входе усилителя присутствует положительная полуволна — работает один транзистор, а когда приходит время воспроизводить отрицательную полуволну, первый транзистор полностью закрывается и вместо него в работу включается второй. В английском варианте этот принцип действия получил название push-pull или, говоря по-русски, «тяни-толкай», что в общем-то очень хорошо описывает происходящее.
Если сравнивать класс В с классом А, наиболее очевидным преимуществом является то, что в классе В на каждую волну приходится полный рабочий диапазон транзистора (или лампы), в то время как в классе А обе полуволны воспроизводятся одним активным элементом. Это значит, что усилитель класса В будет вдвое мощнее усилителя класса А, собранного на таких же транзисторах.
Второй, чуть менее очевидный, но очень важный плюс класса В — нулевые токи смещения. Когда сигнал на входе равен нулю, ток, протекающий через транзисторы, тоже равен нулю, а это значит, что напрасного расхода энергии не происходит, и энергоэффективность схемы получается в разы выше, чем в классе А.
Однако из этого же факта вытекает и главный недостаток усилителя класса В. Момент включения транзистора в работу после полностью закрытого состояния сопровождается небольшой задержкой, поэтому при прохождении звуковым сигналом нулевой точки, когда один транзистор уже закрылся, второй транзистор не успевает мгновенно подхватить эстафету, и в этой самой переходной точке возникают небольшие временные задержки.
На практике это выражается в особенной нелюбви усилителя к тихой музыке, а также в плохой передаче микродинамики. И хотя история знает успешные реализации класса В, например — легендарный Quad 405, проблемы данного режима работы никуда не делись. Тот же 405-й не только радовал энергичным и мускулистым звучанием, но также имел явную склонность рисовать звуковую картину крупными мазками, масштабно, не размениваясь на мелочи.
Для того, чтобы сохранить все плюсы класса В и решить проблему переходных процессов, инженеры пошли на хитрость. Они включили оба транзистора со смещением, как это делается в классе А, но величина смещения при этом была выбрана существенно меньшая: так, чтобы покрыть лишь те моменты, когда транзистор близок к закрытию, выводя тем самым переходные процессы из рабочей зоны.
Это позволило усилителю класса АВ незаметно преодолевать нулевую точку, а также дало еще один крайне полезный эффект. При малой амплитуде сигнала, укладывающейся в пределы смещения тока покоя, подобный усилитель работает в классе А и, только когда амплитуда выходит за пределы выбранной производителем величины смещения, он переходит в режим АВ.
Принципиальная схема.
Вы не поверите, но оригинальная схема, которая была опубликована в далёком 1969 году, до сих пор остаётся актуальной:
Разве что, выходные транзисторы типа MJ480 / 481 морально устарели и их стало сложно найти. Они без проблем могут быть заменены на более современные и надёжные 2N3055.
Как отмечалось ранее, для минимизации искажений усилителя коэффициент передачи тока база транзистора TR1 должен быть равен или выше, чем у транзистора TR2. Очень хорошим решением оказалось использование в выходном каскаде составных транзисторов Дарлингтона типа MJ3001 в качестве Tr1. На частоте 1 кГц, это снижает уровень искажений на мощности близкой к ограничению с 0,1% до 0,01%. При этом, как и прежде, в спектре доминирует вторая гармоника. При снижении выходной мощности уровень искажений падает. Собственные искажения и шумы измерительного оборудования не позволили точно измерить их уровень.
Хотя красивые цифры — это хорошо, тем не менее, я провел тестовые прослушивания этих вариантов и лампового усилителя Williamson. Справедливости ради я вынужден рекомендовать к использованию всё же транзисторы типа 2N3055 в качестве TR1 и TR2.
Особенности
Одной из практических проблем усилителей класса В и АВ является подбор пар транзисторов, работающих в одном канале усиления. Располагаясь в схеме зеркально, два транзистора должны быть полностью идентичны друг другу. В противном случае, сигналы положительной и отрицательной полуволн будут воспроизводиться не симметрично, и это существенно повысит общий уровень искажений.
В реальной жизни абсолютная идентичность — понятие абстрактное, скорее имеет смысл рассуждать о степени похожести или, говоря техническим языком, о пределах допустимых отклонений транзисторов от заданных характеристик. Чем более похожи два транзистора друг на друга, тем меньше уровень искажений, и тем больше их совместная работа приближается к тому, что мы имеем в классе А, когда обе полуволны воспроизводит один транзистор.
Понимая, что даже при самом строгом отборе по параметрам отличия между двумя транзисторами в паре все же будут иметь место (пусть и в предельно малых значениях), мы вынуждены признать, что при прочих равных условиях один такой же транзистор работающий в классе А будет звучать чуть чище и чуть лучше, чем пара в классе АВ.
Совсем иная ситуация вырисовывается, когда речь заходит о работе на большой амплитуде сигнала и на нагрузке требующей высокой мощности. Имея высокий КПД класс АВ нуждается в менее мощном и громоздком блоке питания, нежели усилитель класса А, и тут уже поклонники однотактников вынуждены признать абсолютное и безоговорочное превосходство класса АВ.
Более того, разработчики имеют возможность гораздо свободнее экспериментировать с блоками питания, управляя характером и динамикой звучания путем подбора рабочих характеристик трансформатора и конденсаторов. Например, можно установить трансформатор с многократным запасом мощности, чтобы на пиках сигнала он не выходил из оптимального режима работы, или использовать улучшенные конденсаторы, способные мгновенно отдавать высокий ток.
Еще одна тонкость: работая в классе А, транзисторы выделяют большое количество тепла, что может негативно сказываться на качестве их работы, особенно при увеличении нагрузки. В классе АВ транзисторы греются в меньшей степени, вследствие чего они быстро приходят в рабочий режим и менее подвержены риску перегрева, снижающего качество звучания при работе усилителя на высокой громкости.
Выводы
Усилитель класса А имеет немало плюсов. Проще говоря — его есть, за что любить. Но в современном мире он занимает особое место. Это тот краеугольный камень, вокруг которого придется выстраивать всю остальную систему и под который, в некотором смысле, даже придется подстраивать свой образ жизни.
В первую очередь, речь идет, конечно, о правильном подборе акустики. Тут самое время вспомнить о рупорной акустике с её высокой чувствительностью, да и о винтаже задуматься не грех. Все же в прошлом у разработчиков было больше понимания, как обеспечить много звука, имея на руках маломощные усилители. Ну и при всем вышесказанном надо понимать, что система неизбежно получится жанровой. Бороться с этим фактом бессмысленно, убеждать себя в обратном глупо. Остается просто получать от этого удовольствие.
Если же мы говорим о применении схемотехники класса А в схемах предусилителя или в усилителях для наушников — ситуация в корне меняется. Там, где от усилителя не требуется выделения высокой мощности, класс А показывает исключительно свои положительные стороны, не пытается заставить пользователя жить по своим правилам и не демонстрирует каких-либо жанровых пристрастий.
Продолжение следует…
Статья подготовлена при поддержке компании «Аудиомания», тестирование усилителей проходило в залах прослушивания салона.
Другие полезные материалы в разделе «Мир Hi-Fi» на сайте «Аудиомании» и Youtube-канале компании:
• Про мощность колонок и усилителей
• Праздник, который всегда с тобой: как выбрать портативный аудиопроигрыватель
• От критиков к алгоритмам: лейблы, корпорации и музыкальная культура XX века