Переключатели на основе микросхемы кр1561тл1

Схема таймера для нагрузки с питанием от 220В

На рисунке 2 приводится схема аналогичного таймера, работающего с нагрузкой питающейся переменным током напряжением 220V. Разница в выходном каскаде и в схеме источника питания микросхемы. Выходной каскад сделан на двух транзисторах VТ1 и VТ2, каждый из которых работает на одной из полуволн переменного тока.

Питание на микросхему поступает через выпрямитель на диоде VD4 и параметрический стабилизатор на резисторе R4 и стабилитроне VD1. Пульсации сглаживает конденсатор С3.

Рис. 2. Принципиальная схема таймера для мощной нагрузки с сетевым питанием 220В.

Максимальная мощность нагрузки в схеме на рис.2 до 3000W. При мощности нагрузки менее 200W радиатор транзисторам не нужен. При мощности в 3000W нужен радиатор площадью охлаждающей поверхности 100-150см2.

Связанные материалы

Генератор звуковой частоты на LM324. Прибор и игрушка…
Это простой генератор импульсов для тестовых или учебных целей. В схеме используется дешёвый и…

Программный генератор сигналов звуковой частоты….
Предлагаемая Вашему вниманию программа позволяет использовать звуковую карту компьютера в качестве…

Универсальный генератор на TL494 (прямоугольник и пила)…
Генератор предназначен для лабораторных исследований при разработке и наладке самых различных…

Регулятор мощности на полевых транзисторах с ШИ-управлением + устройство для питания 110-вольтовой аппаратуры от 220 Вольт…
Привет всем датагорцам и гостям Датагории! Предлагаю схемку простого в изготовлении и наладке…

Резонансный детектор НЧ…
При разработке акустической системы крайне необходимо знать резонансную частоту динамических…

Прибор для проверки протяженных телефонных линий (более 2 км) с защитой от ложных срабатываний…
При восстановлении работы кабельных линий связи удобно пользоваться генератором низкой частоты…

Ремонт вызывного устройства телефонных аппаратов…
Вызывное устройство современных телефонных аппаратов может быть собрано как на транзисторах так и…

Генератор розового шума для тестирования звуковой аппаратуры…
У меня с детства в голове сидит понятие о «розовом шуме». Сначала встретил в журнале «Радио» в…

Измерения переменного напряжения звуковой частоты мультиметрами М-832…
Вряд ли будет преувеличением сказать, что тестер семейства М-83х есть у каждого радиолюбителя….

Автомобильный бестрансформаторный DC/AC конвертор: получаем 50Гц в автомобиле…
Несмотря на огромный арсенал всевозможных аналогов бытовых устройств, предназначенных для работы от…

Радионяня (бэби-монитор) FM 90МГц на трёх транзисторах…
Это устройство будет полезно тем радиолюбителям, у которых есть маленькие дети. Когда дети играют в…

Малогабаритный «военный» трансформатор 400 Гц в преобразователе напряжения из 12 в 220 Вольт…
Для уменьшения веса военной радиоаппаратуры применялась частота питающей сети 400 Гц. При этом…

Термостабильный генератор импульсов

категория

Цифровые микросхемы и их применение

Цифровая микросхема К561ТЛ1 (зарубежный аналог — CD4093B) весьма популярна среди радиолюбителей. На ней можно построить разнообразные устройства, ведь в составе этой микросхемы четыре элемента 2И-НЕ с передаточной характеристикой триггера Шмитта (гистерезисом). В частности, К561ТЛ1 можно использовать в роли генератора прямоугольных импульсов звуковой сигнализации (рис.1), работающего в широком диапазоне частот. Частота генерируемых импульсов зависит от номиналов элементов R1 и С1.

Добавление в классическую схему светодиода обеспечивает гораздо лучшую, термостабильность (малые отклонения частоты выходных импульсов при колебаниях температуры.

Показанный на рис.2 генератор вполне конкурентоспособен с кварцевыми генераторами. Сопротивление резистора R1 может изменяться в широких пределах (от единиц килоом до 10…15 МОм). Ёмкость С1 также успешно варьируется от 100 пФ до 50 мкФ. При этом чем меньше ёмкость С1 и больше сопротивление R1, тем выше частота выходных импульсов. Для лучшей термостабильности конденсатор С1 надо использовать неполярный, с ТКЕ (температурным коэффициентом ёмкости) Н70 или М75. При указанных на схеме номиналах элементов частота импульсов составляет 1 кГц. На выход элемента DD1.2 подключается маломощный пьезоэлектрический капсюль НА1, который преобразует импульсы генератора в звуковой сигнал. Для указанного капсюля дополнительного усиления сигнала не требуется.

Если для питания классической схемы (рис.1) используется стабилизированный источник с постоянным напряжением 12 В, при уменьшении Uпит на 1В (примерно на 10%) частота выходных импульсов также уменьшается, но на 1%. Таким образом, отношение изменения питающего напряжения к изменению частоты выходных импульсов составляет соответственно 1:10. В некоторых практических случаях это недопустимо.

В схеме генератора на рис.2 отношение составляет примерно 1:200. А при колебаниях питающего напряжения в диапазоне 11…15 В изменения частоты и вовсе не заметно. В качестве светодиода HL1, кроме указанного на схеме, допустимо использовать любой светодиод с непрерывным свечением, например, L63SRC.

Придать генератору дополнительные возможности нетрудно, если вместо обычного светодиода применить мигающий. Здесь подходит практически любой тип мигающего светодиода. Схема такого генератора показана на рис.3. Светодиод HL1 играет роль прерывателя тока. Вместо указанного на схеме светодиода можно применить L816BRSC-B, L-769BGR или аналогичный. Во время работы узла он вспыхивает.

В данной схеме необходимость в конденсаторе С1 отпадает. Генератор работает за счёт обратной связи через резистор R1 и собственной генерации светодиода HL1. Звук на выходе прерывистый: пауза 0,8 с, звуковой импульс 1,2 с и т.д. При изменении питающего напряжения частота остается стабильной.

Такой узел удобно применять в качестве светозвукового сигнализатора в различных игрушках, устройствах охраны и т.п. Для него нет необходимости разрабатывать печатную плату.

Если вместо указанного излучателя НА1 в данном варианте использовать капсюль с встроенным генератором, например, FMQ-2015В, то звуковой сигнал будет напоминать милицейскую сирену: частота звука будет изменяться на 170…300 Гц в такт вспышкам светодиода HL1.

Можно пойти ещё дальше и применить излучатель с прерыванием KPI-4332-12. Тогда получается трёхтональный переливистый звук. Для «мягкости» звучания параллельно НА1 стоит установить неполярный конденсатор ёмкостью 1000…6800 пФ. Для усиления громкости звука необходимо применить более мощный излучатель НА1, например, СП-1, НС0903А, и оснастить узел усилителем тока на любом транзисторе средней мощности (КТ817).

А. КАШКАРОВ, г.С.-Петербург.РадиоМир 2007 №3

Принципиальная схема

Схема показана на рисунке. Настраивают сумеречный выключатель двумя переменными резисторами. Переменный резистор R1 служит для установки продолжительности горения лампы в пределах от одного до десяти часов. А переменный резистор R2 служит для установки чувствительности к свету.

Рис. 1. Принципиальная схема управления освещением с таймером и датчиком сумерек.

В исходном состоянии счетчик D2 в состоянии с логической единицей на выводе 3. При этом, на выходе инвертора D1.4 -ноль. Транзистор VT1 закрыт, ток на светодиод оптопары U1 не поступает и тиристор VS1 закрыт. Лампа Н1 не горит. Кроме того, ноль с выхода D1.4 поступает на вывод 6 D1.2 и блокирует этим работу мультивибратора на элементах D1.1 и D1.2.

А единица с вывода 3 D2 через цепь R10 С4 поступает на вывод 9 D1.3. Если это происходит днем, то на выводе 8 D1.3 имеется напряжение логической единицы (так как сопротивление фоторезистора FR1 ниже сопротивления R2). С наступлением темноты освещенность фоторезистора FR1 снижается и его сопротивление увеличивается.

В какой-то момент оно становится значительно больше установленного сопротивления R2, и напряжение на выводе 8 D1.3 достигает верхнего порога логического нуля. На выходе элемента D1.3 появляется логическая единица. Цепь С2-R4 формирует импульс, обнуляющий счетчик D2. На его выходе D13 устанавливается ноль (на выводе 3). На выходе инвертора D1.4 — единица.

Транзистор VТ1 открывается и поступает ток на светодиод оптопары U1. Тиристор VS1 открывается. Лампа Н1 горит. Кроме того, единица с выхода D1.4 поступает на вывод 6 D1.2 и разрешает этим работу мультивибратора на элементах D1.1 и D1.2.

А нуль с вывода 3 D2 через цепь R10 С4 с некоторой задержкой, вызванной работой этой цепи, поступает на вывод 9 D1.3. В результате лампа горит, мультивибратор работает и счетчик считает его импульсы, а выход элемента D1.3 зафиксирован в логической единице независимо от сопротивления фоторезистора FR1.

Вот это именно то место, где схема не боится зацикливания от того, что фоторезистор может быть освещен включенной лампой Н1. Потому что элемент D1.3 закрыт для фоторезистора пока лампа горит, и откроется не сразу после выключения лампы, а только после того как С4 зарядится через R10.

И так, счетчик D2 считает импульсы мультивибратора на D1.1 и D1.2. Через некоторое время, которое зависит от частоты импульсов мультивибратора, и устанавливается переменным резистором R1, на выводе 3 D2 появляется логическая единица. При этом, на выходе инвертора D1.4 устанавливается ноль.

Транзистор VТ1 закрывается, ток на светодиод оптопары 111 прекращается и тиристор VS1 закрывается. Лампа Н1 гаснет. Кроме того, ноль с выхода D1.4 поступает на вывод 6 D1.2 и блокирует этим работу мультивибратора на элементах D1.1 и D1.2. А единица с вывода 3 D2 через цепь R10 С4 поступает на вывод 9 D1.3.

Но так как это происходит с задержкой, возможны два варианта. Если еще темно, то на выходе D1.3 состояние не изменится, -там так и останется логическая единица. Что не приведет к сбросу счетчика D2 потому что конденсатор С2 заряжен. Либо, если светло, состояние выхода D1.3 изменится, и там будет ноль.

Но это тоже не приведет к сбросу счетчика D2, потому что конденсатор С2 разрядится через выход D1.3 и диод VD6. На рассвете схема вернется в исходное состояние. Выходной каскад можно сделать и по другой схеме. На рисунке 2 показан более современный вариант. Возможны и самые разные другие варианты.

Рис. 2. Схема возможного выходного каскада для коммутации лампы освещения.

Детали

В обоих случаях, мощность лампы в основном ограничена диодами выпрямительного моста VD2-VD5, и может быть не более 250 W. С заменой диодов выпрямительного моста более мощными и применением соответствующих радиаторов, можно управлять светильником мощностью до 2000 W.

Это что касается большой мощности, но вот при работе со светодиодной лампой будет более предпочтителен вариант схемы выходного каскада по рисунку 2, потому что тиристор КУ202Н может и не открыться при недостаточной мощности лампы. Особенно если учесть что мощность светодиодной лампы может составлять единицы ватт.

Фоторезистор можно заменить другим. В Л.1 приводится таблица с параметрами популярных отечественных фоторезисторов. Можно применить и импортный фоторезистор. Возможно и без каких-то изменений в схеме. Но может быть так, что потребуется изменить номинал R2.

Как уже сказано выше, настройка сумеречного выключателя производится двумя переменными резисторами. R1 -устанавливаем порог чувствительности к свету. R2 — устанавливаем продолжительность горения лампы (от 1 до 10 часов). Поэтому, желательно ручку R1 снабдить указателем с рисками в часах от 1 до 10.

Саргиев Л. РК-01-18.

Литература: 1. Тищенко И. — Фотореле с двумя фоторезисторами. РК-10-17.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector