Проверка дросселя, катушки индуктивности, трансформатора, обмотки, электромагнитного реле. проверить исправность, работоспособность. неисправности
Содержание:
- Характеристики ЭмПРА
- Для чего снабдили датчиком дроссельную заслонку?
- Проверка индуктивности
- Как проверить дроссель мультиметром
- Симптомы неисправности датчика
- Характеристика датчика положения дроссельной заслонки
- Виды и примеры использования
- Причины возникновения неисправностей
- Целостность спиралей-электродов
- Принцип работы
- Проверка индуктивности
- Самые часты неисправности
- Проверка межвиткового замыкания
- Выявление неполадок и их устранение
- Устройство и принцип работы ДРЛ
- Что такое дроссель, внешний вид и устройство
Характеристики ЭмПРА
Дроссели электромагнитного типа характеризуются доступной стоимостью, простой конструкцией и высокими показателями надежности, а основные недостатки таких устройств представлены:
- пульсирующим световым потоком, вызывающим усталость органов зрения;
- порядка 10-15% потери электрической энергии;
- шумностью работы в пусковой момент;
- недостаточно устойчивым запуском в низкотемпературных условиях;
- большими размерами и ощутимым весом;
- продолжительным запуском источника света.
ЭМПРА дроссель
Как правило, комплект бывает представлен лампами и дросселями, а самостоятельная замена баланса предполагает приобретение элемента с аналогичными параметрами.
Следует отметить, что любые подбираемые люминесцентные источники света и дроссели, в обязательном порядке должны быть равными по мощности, что сделает срок службы осветительного прибора максимально продолжительным.
Для чего снабдили датчиком дроссельную заслонку?
Инжектор оснащен заслонками, которые меняют угол расположения, открывая/закрывая зазор для прохода воздушного потока. Его объема должно хватить для создания смеси с горючим в оптимальных пропорциях (в идеале 14,7долей воздуха на 1 долю бензина). Затем смесь порциями впрыскивается в цилиндры двигателя, где происходит ее сжигание.
Чтобы успешно регулировать все этапы топливной подачи ( а это огромное количество параметров), электронному блоку нужен надежный помощник, который займется сбором и отправкой правдивой и своевременной информации в центральный орган.
Такие функции возложены на миниатюрный прибор – датчик ПДЗ, от беспроблемной работы которого зависит исправное и эффективное функционирование двигателя.
Данных этого датчика, лежат в основе расчетных параметров для многих электронных систем, подконтрольных ЭБУ:
Проверка индуктивности
Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.
Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.
При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора
Как проверить дроссель мультиметром
Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.
Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.
Функция измерения индуктивности есть далеко не во всех мультиметрах
Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.
Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.
Так можно проверить исправность дросселя для ламп дневного света
Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.
Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.
В широком понимании слова, дроссель является специальным ограничительным элементом.
Перед тем, как проверить дроссель мультиметром, нужно помнить, что тестирование выполняется несколькими способами, включая применение контрольного или заведомо исправного осветительного элемента, а также специального прибора.
Симптомы неисправности датчика
Основные признаки, по которым можно выявить проблемы в работе контроллера ДПДЗ:
- В работе силового агрегата на холостом ходу возникают сложности. Обороты нестабильные, могут резко увеличиваться или падать, водитель при этом не жмет на педаль газа.
- Силовой агрегат может заглохнуть, когда водитель переключает передачу из одного режима в другой. Произвольная остановка мотора возможна как при езде на нейтральной скорости, так и при стоянке, к примеру, на светофоре или в пробке.
- Расход бензина существенно возрастает. Иногда рост потребления горючего незаметен для автовладельца. Тогда определить перерасход можно только путем замера.
- Фиксируется нестабильность в оборотах холостого хода. Причем это не зависит от режима функционирования силового агрегата.
- Мощность мотора машины значительно падает. Ее снижение обычно точно можно заметить при движении на подъеме, когда включена повышенная передача. Переключившись на более низкую скорость, можно избежать падения «тяги».
- Если автомобиль разгоняется или двигается на невысокой скорости, могут ощущаться рывки при нажатии на газ.
- Двигатель глохнет, как только водитель отпускает педаль газа.
- Из впускного коллекторного устройства начинают раздаваться звуки хлопков. Они появляются периодически, иногда их можно услышать при нажатии на газ.
- На панели приборов появляется световой индикатор Check Engine. Он может гореть постоянно либо загораться периодически.
Иван Васильевич подробно на практике рассказал о симптомах неисправностей ДПДЗ.
Характеристика датчика положения дроссельной заслонки
Предназначение датчика заключается в регулировке объема воздушного потока, который поступает в мотор. Этот воздух используется для образования горючей смеси.
Где расположен датчик в авто?
Чтобы при необходимости выполнить диагностику устройства, автовладельцу надо знать, где находится ДПДЗ. Контроллер устанавливается в моторном отсеке. Его можно увидеть сбоку от дроссельной магистрали на оси самой заслонки.
Расположение контроллера на дросселе
Конструкция устройства
Конструктивно устройство включает в себя следующее:
- Корпус контроллера. Этот компонент выполнен из термостойкого стеклопластика. Корпус оснащается двумя фланцами, которые используются для фиксации контроллера к дроссельному узлу.
- Соединительное устройство, оснащенное тремя контактами. Этот компонент объединен с корпусом контроллера.
- Резистивное устройство, выполненное из керамики.
- Токосъемный элемент. Эта составляющая предназначена для обеспечения электрического контакта с резистивной деталью.
- Цанговый зажим, оснащается шлицем.
- Резиновая прокладка. Используется для монтажа контроллера на ось дроссельного узла.
Назначение датчика положения дроссельной заслонки
Сам контроллер отвечает за корректное выявление положения заслонки на дроссельном узле. Его показания влияют на работу системы подачи топлива. Силовой агрегат в соответствии со значениями устройства выполняет регулировку объема поступаемого бензина при определенном режиме функционирования. ДПДЗ используется для преобразования углового положения заслонки дросселя в напряжение постоянного тока.
Особенности работы устройства:
- Данные, которые передает контроллер, позволяют вычислить величину открытия заслонки. Поступающая на управляющий модуль информация обеспечивает расчет основных параметров управления силовым агрегатом. Причем данные определяются с учетом типа езды машины.
- Само по себе устройство представляет потенциометр, оснащенный токосъемником. Последний используется для перемещения по установленному радиусу сектора, составляющего от 0 до 80 градусов. Ось данного конструктивного элемента при монтаже прибора должна быть связана с приводом дроссельного узла.
- Параметр выходного сопротивления потенциометра может меняться с учетом нажатия на педаль газа. В зависимости от ее положения изменяется и степень открытия заслонки узла.
- Питание контроллера производится посредством подачи стабилизированного напряжения. Величина исходит от управляющего модуля и должна составлять в районе 5 вольт. Допускается отклонение в размере 0,1 В в большую или меньшую сторону.
Схематический принцип действия контроллера
Технические параметры устройства
Основные технические свойства контроллеров ДПДЗ:
- Напряжение для питания устройства подается на два вывода — 1 и 2.
- Величина сопротивления, которое образуется между выводами 1 и 2, составляет от 1,8 до 2 кОм.
- Параметр открытия полностью закрытой заслонки узла — от 0 до 2%.
- Величина напряжения, которое подается на выходы под номерами 3 и 2 при закрытой заслонке составляет от 0,25 до 0,65 вольт.
- Величина открытия заслонки узла составляет более 90 градусов.
- Параметр напряжения, которое подается на 3 и 2 вывода при полном дросселе, составляет от 3,9 до 4,7 вольт.
- Число полных циклов активации устройства при его работе — не меньше одного миллиона.
- Градуировочное свойство зависимости параметра напряжения на выходе от угла поворота обладает линейным характером. Оно измеряется в диапазоне от 0 до 100 градусов. Напряжение составляет от 0,25 до 4,8 вольт. Значение наклона характеристики варьируется в районе 48 мВ.
- Параметр рабочей зоны контроллера находится в линейной области характеристики в диапазоне от 10 до 90 градусов. Это соответствует величине открытия заслонки узла на угол от 0 до 100 градусов. Значение наклона варьируется в районе 39 мВ.
Разновидности
Существует два основных вида устройств:
- Датчики пленочно-резистивные. Такой тип контроллеров обычно ставится штатно при производстве авто. Срок эксплуатации пленочно-резистивных устройств в среднем составляет примерно 55 тыс. км. Но по факту они выходят из строя чаще.
- Бесконтактный тип устройств. Такие ДПДЗ функционируют на основе магнитно-резистивного явления, используется эффект Холла. Цена бесконтактных датчиков выше, но срок эксплуатации огромный. Эти приборы более надежные, поэтому редко выходят из строя.
Андрей Серомолотов показал, как с бесконтактным ДПДЗ работает машинный двигатель.
Виды и примеры использования
Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:
- Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
- Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
- Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
- Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.
Практически в любой схеме есть этот элемент
Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.
Дроссель в лампах дневного света
Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:
- При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
- Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.
Как подключается дроссель в светильнике дневного света
В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.
В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.
Зачем нужен дроссель в блоке питания
Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.
Дроссель для сглаживания пульсаций
Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.
Причины возникновения неисправностей
Причины, по которым может потребоваться ремонт либо замена ДПДЗ:
- Закислились контактные элементы. Эту проблему сложно назвать поломкой, но она относится к неисправностям, которые можно устранить. При длительной эксплуатации контакты датчика могут окислиться. Это связано с работой ДПДЗ в условиях перепадов температур и воздействии влаги. Для ликвидации проблемы надо демонтировать контроллер и произвести очистку контактных элементов ваткой, обработанной средством WD-40.
- Стирание напыления на основании начального отрезка передвижения ползунка. Если резистивная основа удаляется, работа контроллера будет некорректной. Во время передвижения ползунка величина напряжения, которое поступает на управляющий модуль, увеличится. Но в результате стирания этого не происходит, поскольку сопротивление отсутствует. Это приводит к появлению неполадок, иногда происходят сбои в работе управляющего модуля.
- Повреждение наконечников на устройстве. Если это происходит, то на подкладке образуются заусеницы, что в итоге приведет к поломке остальных элементов. В некоторых случаях контакты продолжат функционировать, но это продлится недолго, тем более что износ подложки увеличится. При подобных проблемах ползунок и резистивный слой откажутся контактировать, что приведет к неработоспособности мотора машины.
- Поломка ползунка. Данный компонент устройства при длительной эксплуатации изнашивается. В результате он может отойти от необходимой траектории, что приведет к неполадкам.
Одна из причин выхода из строя контроллера положения заслонки дросселя показана в ролике канала «Все Сам».
Целостность спиралей-электродов
Лампы «перегорают» гораздо реже, хотя проверить их проще, чем стартер. Делают это обычным тестером с контрольной лампой или мультиметром, настроенным на измерение сопротивлений. Довольно легко проверить целостность спиралей.
Для проверки тестер или мультиметр подключается к паре выводов на отдельном конце колбы.
Если спирали целые, то контрольная лампа тестера должна светиться, а мультиметр должен показывать небольшое сопротивление (около 10 Ом). Если тестер «молчит», а сопротивление мультиметра бесконечно, имеет место обрыв спирали. При обрыве даже одной спирали из двух, лампа, очевидно, работать не будет. В этом случае необходима ее замена.
Принцип работы
Люминесцентная лампа по принципу действия приравнивается к газоразрядным источникам света, является энергосберегающей. Из стеклянной колбы откачивается воздух и помещается инертный газ с капелькой ртути 30 мг. В противоположные стороны встроены спиральные электроды, напоминающие нить накаливания. Эти электроды припаяны с обеих сторон к двум контактным ножкам, помещенным в диэлектрические пластины. Трубка изнутри покрыта слоем люминофора. Длина, диаметр и форма колбы могут быть разными, внутреннее строение от этого не меняется.
Строение люминесцентной лампы
Включение ЛЛ происходит с помощью пускорегулирующей аппаратуры – электромагнитной или электронной. Электромагнитная пускорегулирующая аппаратура (ЭмПРА) включает в себя главный элемент – дроссель.
Электромеханический дроссель
Это балластное сопротивление в виде катушки индуктивности с металлическим сердечником, последовательно соединенное с ЛДС. Дроссель поддерживает равномерность разряда и корректирует ток при необходимости. В миг включения светильника дроссель сдерживает пусковой ток, пока спиральные нити не разогреются, далее выдает пиковое напряжение от самоиндукции, зажигающее лампу.
Схема люминесцентного светильника с ЭмПРА
Предъявляемые к балластному сопротивлению требования:
- минимальные потери мощности;
- малые вес и размер;
- отсутствие гула;
- температура накала не выше 600 градусов по Цельсию.
Другой значимый элемент ЭмПРА – стартер тлеющего разряда.
Стартер тлеющего разряда
Во время включения светильника в стартере возникает разряд тока, накаляющий биметаллические контакты. Они замыкаются, увеличивая ток в цепи светильника, что ведет к разогреву электродов. Далее биметаллический контакт стартера остывает и размыкает цепь. В этот миг балласт (дроссель) выдает высоковольтный импульс на электроды. Между ними возникает дуговой разряд, вызывающий ультрафиолетовое излучение. От этого люминофор на поверхности колбы светится в видимом для человека спектре.
Электронная пускорегулирующая аппаратура (ЭПРА) используется в светильниках нового поколения, увеличивает срок службы лампы и повышает КПД. В режиме свечения уровень напряжения на электродах допускает работу ЛЛ с перегоревшими спиралями, что невозможно при ЭмПРА. В схеме ЭПРА исключается использование стартеров.
Схема подключения электронного балласта
Электронные балласты достаточно дорогие и сложны для ремонта своими силами, поэтому имеет место широкое применение электромеханических дросселей.
Электронный балласт
Это интересно: Как выбрать и установить прожектор с датчиком движения для улицы: изучаем главное
Проверка индуктивности
Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.
Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.
При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора
Самые часты неисправности
Как правило, источники неисправности, которые связаны с эксплуатацией люминесцентных ламп, представлены сбоями в работе электрической схемы ПРА и стартера. Посредством оценивания характерных визуальных эффектов, можно достоверно определить причины неисправности:
- наличие «огненной змейки», вьющейся внутри колбы, является результатом превышения допустимых токовых значений и нестабильности электрического разряда;
- темная колба на участке расположения выходных цокольных контактов, свидетельствует о несоответствии показателей тока на пуск и работу с вольт-амперными характеристиками;
- перегорание спиралей в лампах дневного света, может стать результатом изоляционной изношенности обмотки пускорегулирующего устройства.
Достаточно часто встречаются проблемы, сопровождающиеся появлением запаха гари или сторонних звуков. В этом случае можно предположить появление межвиткового замыкания на индукционной катушке.
Если люминесцентный источник света не включается, то чаще всего такая проблема является результатом неисправности пускорегулирующего устройства или обмоточного обрыва, поэтому важно правильно выполнить проверку дросселя и стартера тестером.
Проверка межвиткового замыкания
В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.
Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.
Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.
В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.
Схема прибора приведена на рисунке.
Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).
Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.
Выявление неполадок и их устранение
Неисправность лампы дневного света выражается в:
- Полном отсутствии включения.
- Кратковременных мерцаниях лампы с дальнейшим включением.
- Продолжительном мерцании без дальнейшего включения.
- Гудении.
- Мерцании в режиме горения.
Это может неблаготворно сказаться на зрении человека, поэтому следует незамедлительно диагностировать поломку и приступить к ремонту светильника. Для этой цели понадобится мультиметр или тестер сопротивления.
Часто ЛЛ не горит из-за плохого контакта между штырьками лампы и контактами патрона. Держатели со временем изнашиваются и окисляются. Следует почистить их спиртосодержащей жидкостью, ластиком, мелкой шкуркой, а при необходимости подогнуть или заменить пластинки контактов для лучшего соприкосновения со штырьками. Следует помнить, что ЛДС не работает при температуре ниже –50 ˚С и при скачках напряжения более 7 %.
Целостность спиралей-электродов
Лампа не загорается. Проверяется при помощи мультиметра или индикатора на наличие сопротивления с мини-лампочкой. Переключатель устанавливают на измерение сопротивления – минимальный диапазон, щупами прикасаются к штырькам сначала с одной, потом с другой стороны. Неисправная спираль покажет нулевое сопротивление (нить порвалась). Целая нить покажет незначительное сопротивление – от 3 до 16 Ом. Если даже одна из спиралей покажет обрыв, лампа подлежит замене. Восстановить работоспособность с такой поломкой не получится.
Неисправности в электронном балласте
В лампах нового поколения используется электронная пускорегулирующая аппаратура (ЭПРА). Чтобы понять, исправен ли балласт, заменяют его на заведомо рабочий. Если светильник включился, это означает, что поломка была в нем. Старый балласт можно починить в домашних условиях. Сначала можно попробовать заменить предохранитель на аналогичный с таким же диаметром и плавкой вставкой. Если спиральные нити слабо светятся – пробит конденсатор между ними. Его нужно заменить на аналогичный, но с рабочим напряжением 2 кВ. В дешевых балластах ставят конденсаторы на 250–400 В, которые часто сгорают.
Устройство электронного балласта
Транзисторы могут перегореть из-за скачков напряжения. При работе сварочного агрегата или любой мощной техники ЛДС желательно выключать. Транзисторы можно взять из списанных балластов или подобрать по таблице. После замены любого элемента нужно проверить исправность светильника, вставив в него лампу мощностью 40 Вт.
Как проверить дроссель люминесцентного светильника
Признаки неисправности дросселя:
- гудение светильника из-за дребезжания пластин;
- лампа зажигается нормально, потом темнеет по краям и гаснет;
- перегрев ЛДС;
- после включения внутри колбы бегают змейки;
- сильное мерцание.
Проверка дросселя
Для проверки дросселя на исправность из светильника вынимают стартер и замыкают накоротко контакты в его патроне. Вынимают лампу и закорачивают контакты в патронах с обеих сторон. Мультиметр устанавливается в режим измерения сопротивления, щупы присоединяются к контактам в патроне лампы. Обрыв обмотки покажет бесконечное сопротивление, а межвитковое замыкание – значение (стрелка) около нуля.
Как проверить стартер
Если при включении ЛДС мерцает, но не загорается, – неисправен стартер. Отдельно от светильника прозвонить стартер мультиметром не удастся, так как без напряжения его контакты разомкнуты. Схема проверки данного элемента включает в себя лампочку 60 Вт и стартер, подключенные последовательно к сети 220 В.
Как проверить емкость конденсатора тестером
Неисправный конденсатор, находящийся между проводами сети питания, снижает КПД светильника до 40%. В рабочем состоянии КПД составляет 90%, что более экономично. Для ЛЛ до 40 Вт подойдет конденсатор емкостью 4,5 мкФ. Слишком низкая емкость снижает КПД, высокая – вызовет мерцание. Исправность конденсатора проверяют мультиметром с соответствующей функцией.
Устройство и принцип работы ДРЛ
Классическая лампа ДРЛ состоит из основных электродов, поджигающих или дополнительных электродов, вводных частей электродов, специального газа, позисторов и ртути. В качестве газа используется аргон, производящий начальную ионизацию и способствующий получению дугового разряда. Аргон еще называют буферным газом. С помощью позисторов ограничивается ток поджигающих электродов. Ртуть применяется для изменения величины потенциала при разряде.
Основные функциональные части обычной ДРЛ
- Цоколь, непосредственно принимающий электроэнергию из сети. Его контакты — точечный и резьбовой, соединяются с контактами патрона. Таким образом, переменный ток поступает на электроды лампы.
- Кварцевая горелка представляет собой основную часть. Изготавливается в виде колбы с расположенными по бокам четырьмя электродами, в том числе, два из них — основные, а два других — дополнительные. Пространство внутри горелки заполняется аргоном с целью недопущения теплообмена, а также небольшим количеством ртути.
- Стеклянная колба является внешней частью. У нее внутри размещается кварцевая горелка, к которой подводятся проводники от цоколя. Вместо воздуха внутрь колбы закачивают азот. Внутренняя сторона колбы покрывается люминофором.
Довольно простой. Питание осуществляется от сетевого напряжения. После того как было выполнено подключение лампы ДРЛ, электрический ток начинает доходить до промежутка между обеими парами электродов, расположенными на противоположных концах лампы. Незначительное расстояние между ними способствует быстрой ионизации газа. Вначале газ ионизируется между поджигающими электродами, затем ток поступает к основным электродам и по окончании этого процесса лампа начинает излучать свет.
Полное свечение лампы начинается приблизительно через 7-10 минут. Данный промежуток времени требуется для разогрева ртути, расположенной в виде налета или сгустка на внутренних стенках колбы. Во время эксплуатации срок службы ламп постепенно сокращается, а период, необходимый для полного включения — увеличивается.
Горелка изготовлена из прозрачного материала — кварцевого стекла, заполнена инертными газами в строго определенных дозах. Вводимая в горелку ртуть, может иметь вид небольшого шарика, а также оседает на стенках и электродах в виде налета. Источником света является дуговой электрический разряд.
Схема лампы ДРЛ входит в общую схему подключения через дроссель. Марка дросселя должна соответствовать мощности лампы. Основное назначение дросселя — ограничение тока, поступающего на лампочку. В случае отсутствия дросселя лампа мгновенно перегорит, поскольку внешний электроток для нее слишком большой. Обычно в схему еще добавляют конденсатор, влияющий на реактивную мощность при запуске, что позволяет почти в два раза экономить электроэнергию.
Наибольшее свечение происходит, примерно, через 6-7 минут. Это время необходимо, чтобы перевести ртуть в газообразное состояние, улучшающее разряд между электродами. После этого лампа переходит в нормальный рабочий режим с наибольшей светоотдачей. После выключения лампочки, ее нельзя включать до полного остывания.
Что такое дроссель, внешний вид и устройство
Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.
Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.
Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без
Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.
Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.
Схематическое изображение дросселя с магнитным сердечником и без
Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.
Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).