Расчет падения напряжения в кабеле формула и причины

Что такое падение напряжения на резисторе

Электрический ток, проходя по цепи, испытывает сопротивление, которое может изменяться под воздействием разнообразных условий внешней среды (экстремально низкие температуры или нагрев) и может зависеть от характеристик конкретного проводника. Например, чем тоньше проводник или длиннее – тем оно выше.

На значение его величины влияют следующие факторы:

  • сила тока;
  • длина проводящих частей;
  • напряжение;
  • материал проводниковых элементов;
  • нагрев (температура);
  • площадь поперечного сечения.

Резисторы можно разделить на постоянные, переменные и подстроечные. Главное их отличие друг от друга – возможность изменения показателя сопротивления. Чаще всего встречаются постоянные резисторы – данный показатель в них нельзя изменить, поэтому они и получили такое название. Переменные отличаются тем, что величину сопротивления в них можно настраивать. В подстроечном резисторе её также можно изменять, но отличие данной разновидности в том, что он не рассчитан на частое изменение параметра. Подстроечные резисторы выполняются в более компактном корпусе по сравнению с переменными.

Чтобы вычислить падение напряжения на резисторе, нужно помнить, что снижение нагрузки, приложенной ко всей цепи (то есть, напряжения, подключённого к контуру) может быть получено как для всего контура, так и для любого элемента цепи. Напряжение понижается за счёт сопротивления, которым обладают проводники.

Падение напряжения на резисторе зависит от силы проходящего тока и характеристик проводников. Температура и показатели тока также имеют значение. Например, напряжение, измеренное вольтметром на лампочке, подключённой к сети 220 В, будет немного ниже за счёт сопротивления, которым обладает лампочка.

Источники питания имеют разную величину напряжения. Это значение может превышать то, которое бывает необходимо на выходе. Чтобы нагрузка, которую требуется запитать, не сгорела, часто возникает необходимость в понижении вольтажа, в том числе с помощью резисторов.

Сравнительная таблица напряжений

Источник питания Напряжение
NiCd аккумулятор 1,2 В
Литий-железо-фосфатный аккумулятор 3,3 В
Батарея типа «Крона» 9 В
Автомобильный аккумулятор 12 В
Аккумулятор для грузовых автомобилей 24 В

В этом случае резистор должен уменьшить протекающий по цепи ток. При этом ток не превращается в тепло, происходит именно его ограничение. То есть при включении резистора в цепь ток упадёт – в этом и состоит работа резистора, при совершении которой элемент нагревается.

В общем случае падения напряжения можно рассчитать, используя простую формулу, связывающее показатели между собой.

Но в ряде случаев, например, при параллельном подключении сопротивлений, посчитать необходимую величину уже сложнее. В этом случае по специальной формуле потребуется привести сопротивление параллельных веток к одному числу:

R = R1*R2 / (R1+R2)

При необходимости также учитываются другие сопротивления, суммирующиеся с этим значением (например, сопротивление провода и источника питания).

Закон Ома для участка цепи

Со школьного курса физики всем хорошо известна классическая трактовка Закона Ома:

Сила тока в проводнике прямо пропорциональна напряжению на концах проводника и обратно пропорциональна его сопротивлению.

I = U/R

Это значит, если к концам проводника сопротивлением R = 1 Ом приложено напряжение U = 1 Вольт, тогда величина тока I в проводнике будет равна 1/1 = 1 Ампер.

Отсюда следуют ещё два полезных соотношения:

Если в проводнике, сопротивлением 1 Ом, протекает ток 1 Ампер, значит на концах проводника напряжение 1 Вольт (падение напряжения).

U = IR

Если на концах проводника есть напряжение 1 Вольт и по нему протекает ток 1 Ампер, значит сопротивление проводника равно 1 Ом.

R = U/I

Вышеописанные формулы в таком виде могут быть применимы для переменного тока лишь в том случае, если цепь состоит только из активного сопротивления R.
Кроме того, следует помнить, что Закон Ома справедлив только для линейных элементов цепи.

Предлагается простой Онлайн-калькулятор для практических расчётов.Закон Ома. Расчёт напряжения, сопротивления, тока, мощности.
После сброса ввести два любых известных параметра.

I=U/R;   U=IR;   R=U/I; P=UI   P=U²/R;   P=I²R;
R=U²/P;   R=P/I²   U=√(PR)   I= √(P/R)

Объединение резистивных радиокомпонентов

Для получения необходимого номинала сопротивления применяются два типа соединения резисторов: параллельное и последовательное. Если их соединить параллельно, то нужно два вывода одного резистора подключить к двум выводам другого. Если соединение является последовательным, то один вывод резистора соединяется с одним выводом другого резистора. Соединения используются для получения необходимых номиналов сопротивлений, а также для увеличения рассеивания мощности тока, протекающего по цепи.

https://youtube.com/watch?v=jJX6IsRhnhs

Параллельное соединение

При параллельном подключении значение напряжения на всех резисторах одинаковое, а сила тока — обратно пропорциональна их общему сопротивлению. В интернете web-разработчики создали для расчета величины общего сопротивления параллельного соединения резисторов онлайн-калькулятор.

Рассчитывается общее сопротивление при параллельном соединении по формуле: 1 / Rобщ = (1 / R1) + (1 / R2) + …+ (1 / Rn). Если выполнить математические преобразования и привести к общему знаменателю, то получится удобная формула параллельного соединения для расчета Rобщ. Она имеет следующий вид: Rобщ = (R1 * R2 * … * Rn) / (R1 + R2 + … + Rn). Если необходимо рассчитать величину Rобщ только для двух радиокомпонентов, то формула параллельного сопротивления имеет следующий вид: Rобщ = (R1 * R2) / (R1 + R2).

При ремонте или проектировании схемы устройства возникает задача объединения нескольких резистивных элементов для получения конкретной величины сопротивления. Например, значение Rобщ для определенной цепочки элементов равно 8 Ом, которое получено при расчетах. Перед радиолюбителем стоит задача, какие нужно подобрать номиналы для получения нужного значения (в стандартном ряду резисторов отсутствует радиокомпонент с номиналом в 8 Ом, а только 7,5 и 8,2). В этом случае нужно найти сопротивление при параллельном соединении резистивных элементов. Посчитать значение Rобщ для двух элементов можно следующим образом:

  1. Номинал резистора в 16 Ом подойдет.
  2. Подставить в формулу: R = (16 * 16) / (16 + 16) = 256 / 32 = 8 (Ом).

В некоторых случаях следует потратить больше времени на подбор необходимых номиналов. Можно применять не только два, но и три элемента. Сила тока вычисляется с использованием первого закона Кирхгофа. Формулировка закона следующая: общее значение тока, входящего и протекающего по цепи, равен выходному его значению. Величина силы тока для цепи, состоящей из двух резисторов (параллельное соединение) рассчитывается по такому алгоритму:

  1. Ток, протекающий через R1 и R2: I1 = U / R1 и I2 = U / R2 соответственно.
  2. Общий ток — сложение токов на резисторах: Iобщ = I1 + I2.

Например, если цепь состоит из 2 резисторов, соединенных параллельно, с номиналами в 16 и 7,5 Ом. Они запитаны от источника питания напряжением в 12 В. Значение силы тока на первом резисторе вычисляется следующим способом: I1 = 12 / 16 = 0,75 (А). На втором резисторе ток будет равен: I2 = 12 / 7,5 = 1,6 (А). Общий ток определяется по закону Кирхгофа: I = I1 + I2 = 1,6 + 0,75 = 2,35 (А).

Последовательное подключение

Последовательное включение резисторов также применяется в радиотехнике. Методы нахождения общего сопротивления, напряжения и тока отличаются от параллельного подключения. Основные правила соединения следующие:

  1. Ток не изменяется на участке цепи.
  2. Общее напряжение равно сумме падений напряжений на каждом резисторе.
  3. Rобщ = R1 + R2 + … + Rn.

Пример задачи следующий: цепочка, состоящая из 2 резисторов (16 и 7,5 Ом), питается от источника напряжением 12 В и током в 0,5 А. Необходимо рассчитать электрические параметры для каждого элемента. Порядок расчета следующий:

  1. I = I1 = I2 = 0,5 (А).
  2. Rобщ = R1 + R2 = 16 + 7,5 = 23,5 (Ом).
  3. Падения напряжения: U1 = I * R1 = 0,5 * 16 = 8 (В) и U2 = I * R2 = 0,5 * 7,5 = 3,75 (В).

Не всегда выполняется равенство напряжений (12 В не равно 8 + 3,75 = 11,75 В), поскольку при этом расчете не учитывается сопротивление соединительных проводов. Если схема является сложной, и в ней встречается два типа соединений, то нужно выполнять расчеты по участкам. В первую очередь, рассчитать для параллельного соединения, а затем для последовательного.

Маленькие хитрости. Часть 4. — КульбакиМастер.ru

Каждый уважающий себя радио-мастер обязан знать формулы для расчета различных электрических величин. Ведь при ремонте электронных устройств или сборке электронных самоделок очень часто приходится проводить подобные расчеты. Не зная таких формул очень сложно и трудоемко,  а порой и невозможно справиться с подобного рода задачей!

Как рассчитать емкость конденсатора, как рассчитать сопротивление резистора или узнать мощность устройства – в этом помогут формулы для радиолюбительских расчетов.

Первое, что нужно усвоить – ВСЕ ВЕЛЕЧИНЫ В ФОРМУЛАХ УКАЗЫВАЮТЬСЯ В АМПЕРАХ, ВОЛЬТАХ, ОМАХ, МЕТРАХ И КИЛОГЕРЦАХ.

Закон Ома.

Известный из школьного курса  физики ЗАКОН ОМА. На нем строится большинство расчетов в радиоэлектронике.  Закон Ома выражается в трех формулах:

Где: I – сила тока (А),  U – напряжение (В),  R– сопротивление,  имеющееся в цепи (Ом).

Теперь рассмотрим на практике применение формул в радиолюбительских расчетах.

Как рассчитать сопротивление гасящего резистора.

Сопротивление гасящего резистора рассчитывают по формуле:  R=U/I

Где:  U – излишек напряжения, который необходимо погасить (В),  I – ток потребляемый цепью или устройством (А).

Как рассчитать мощность гасящего резистора.

Расчет мощности гасящего резистора проводят по формуле:  P=I2R

Где I – ток потребляемый цепью или устройством (А), R– сопротивление резистора (Ом).

Как рассчитать напряжение падения на сопротивлении.

Напряжение падения на сопротивлении можно рассчитать  по формуле:  Uпад.=RI

Где R– сопротивление гасящего резистора (Ом), I– ток потребляемый устройством или цепью (А).

Как рассчитать ток потребляемый устройством  или цепью.

Рассчитать ток потребляемый устройством или цепью можно по формуле:  I=P/U

Где P– мощность устройства (Вт), U– напряжение питания устройства (В).

Как рассчитать мощность устройства в Вт.

Рассчитать мощность устройства в Вт. можно по формуле:   P=IU

Где I– ток потребляемый устройством (А), U– напряжение питания устройства (В).

Как рассчитать длину радиоволны.

Рассчитать длину радиоволны можно по формуле:  ƛ=300000/ƒ

Где  ƒ-частота в килогерцах, ƛ- длинна волны в метрах.

Как рассчитать частоту радиосигнала.

Частоту радиосигнала можно рассчитать по формуле:  ƒ=300000/ƛ

Где ƛ- длинна волны в метрах, ƒ – частота в килогерцах.

Как рассчитать номинальную выходную мощность звуковой частоты.

Рассчитать номинальную выходную мощность звуковоспроизводящего устройства (усилитель, проигрыватель и т.п.) можно по формуле:   P=U2вых./ Rном.

Где U2 – напряжение звуковой частоты на нагрузке, R– номинальное сопротивление нагрузки.

И в завершении еще несколько формул.  По этим формулам, ведут расчет сопротивления и емкости резисторов и конденсаторов в тех случаях,  когда возникает необходимость в параллельном или последовательном их соединении.

Как рассчитать сопротивление двух параллельно включенных резисторов.

Расчет соединенных параллельно двух резисторов производят по формуле:  R=R1R2/(R1+R2)

Где R1 и R2  — сопротивление первого и второго резистора соответственно (Ом).

Как рассчитать сопротивление более двух включенных параллельно резисторов.

Расчет сопротивления включенных параллельно более чем двух резисторов проводят по формуле:  1/R=1/R1+1/R2+1/Rn…

Где R1, R2, Rn… — сопротивление первого, второго и последующих резисторов соответственно (Ом).

Как рассчитать емкость включенных параллельно двух или более конденсаторов.

Расчет емкости соединенных  параллельно нескольких конденсаторов проводят по формуле:  C=C1+ C2+Cn…

Где C1 , C2 и Cn– емкость первого, второго и последующих конденсаторов соответственно (мФ).

Как рассчитать емкость включенных  последовательно двух конденсаторов.

Расчет емкости двух соединенных  последовательно конденсаторов проводят по формуле:  C=C1 C2/C1+C2

Где C1 и C2 – емкость первого и второго конденсаторов соответственно (мФ).

Как рассчитать емкость включенных последовательно более чем двух конденсаторов.

Расчет емкости включенных последовательно более чем двух конденсаторов проводят по формуле:  1/C=1/C1+1/C2+1/Cn…

Где C1, C2 и Cn… — емкость первого, второго и последующих конденсаторов (мФ).

Читать далее : «Маленькие хитрости». Часть 1 .

                                   «Маленькие хитрости». Часть 2.

                                   «Маленькие хитрости». Часть 3. 

 .

Если у Вас возникли вопросы по данному материалу, посетите наш  ФОРУМ радиолюбителей и задайте вопрос.

   НА ГЛАВНУЮ      в раздел СЕКРЕТЫ РАДИОЭЛЕКТРОНИКИ .

Резистор. Падение напряжения на резисторе. Мощность. Закон Ома — МикроПрогер

Итак, резистор… Базовый элемент построения электрической цепи.

Работа резистора заключается в ограничении тока, протекающего по цепи. НЕ в превращении тока в тепло, а именно в ограничении тока. То есть, без резистора по цепи течет большой ток, встроили резистор – ток уменьшился. В этом заключается его работа, совершая которую данный элемент электрической цепи выделяет тепло.

Пример с лампочкой

Рассмотрим работу резистора на примере лампочки на схеме ниже. Имеем источник питания, лампочку, амперметр, измеряющий ток, проходящий через цепь. И Резистор. Когда резистор в цепи отсутствует, через лампочку по цепи побежит большой ток, например, 0,75А. Лампочка горит ярко. Встроили в цепь резистор —  у тока появился труднопреодолимый барьер, протекающий по цепи ток снизился до 0,2А. Лампочка горит менее ярко. Стоит отметить, что яркость, с которой горит лампочка, зависит так же и от напряжения на ней. Чем выше напряжение — тем ярче.

Ограничение тока резистором

Кроме того, на резисторе происходит падение напряжения. Барьер не только задерживает ток, но и «съедает» часть напряжения, приложенного источником питания к цепи. Рассмотрим это падение на рисунке ниже. Имеем источник питания на 12 вольт. На всякий случай амперметр, два вольтметра про запас, лампочку и резистор. Включаем цепь без резистора(слева). Напряжение на лампочке 12 вольт. Подключаем резистор — часть напряжения упала на нем. Вольтметр(снизу на схеме справа)  показывает 5В. На лампочку остались остальные 12В-5В=7В. Вольтметр на лампочке показал 7В.

Падение напряжение на резисторе

Разумеется, оба примера являются абстрактными, неточными в плане чисел и рассчитаны на объяснение сути процесса, происходящего в резисторе.

Основная характеристика резистора — сопротивление. Единица измерения сопротивления — Ом (Ohm, Ω). Чем больше сопротивление, тем больший ток он способен ограничить, тем больше тепла он выделяет, тем больше напряжения падает на нем.

Основной закон всего электричества. Связывает между собой Напряжение(V), Силу тока(I) и Сопротивление(R).

V=I*R

Интерпретировать эти символы на человеческий язык можно по-разному. Главное — уметь применить для каждой конкретной цепи. Давайте используем Закон Ома для нашей цепи с резистором и лампочкой, рассмотренной выше, и рассчитаем сопротивление резистора, при котором ток от источника питания на 12В ограничится до 0,2.  При этом считаем сопротивление лампочки равным 0.

V=I*R    =>     R=V/I    =>    R= 12В / 0,2А   =>   R=60Ом

 Итак. Если встроить в цепь с источником питания и лампочкой, сопротивление которой равно 0, резистор номиналом 60 Ом, тогда ток, протекающий по цепи, будет составлять 0,2А.

Микропрогер, знай и помни! Параметр мощности резистора является одним из наиболее важных при построении схем для реальных устройств.

Мощность электрического тока на каком-либо участке цепи равна произведению силы тока, протекающую по этому участку на напряжение на этом участке цепи. P=I*U. Единица измерения 1Вт.

При протекании тока через резистор совершается работа по ограничению электрического тока. При совершении работы выделяется тепло. Резистор рассеивает это тепло в окружающую среду. Но если резистор будет совершать слишком большую работу, выделять слишком много тепла — он перестанет успевать рассеивать вырабатывающееся внутри него тепло, очень сильно нагреется и сгорит. Что произойдет в результате этого казуса, зависит от твоего личного коэффициента удачи.

Характеристика мощности резистора — это максимальная мощность тока, которую он способен выдержать и не перегреться.

Рассчитаем мощность резистора для нашей цепи с лампочкой. Итак. Имеем ток, проходящий по цепи(а значит и через резистор), равный 0,2А. Падение напряжения на резисторе равно 5В (не 12В, не 7В, а именно 5 — те самые 5, которые вольтметр показывает на резисторе). Это значит, что мощность тока через резистор равна P=I*V=0,2А*5В=1Вт. Делаем вывод: резистор для нашей цепи должен иметь максимальную мощность не менее(а лучше более) 1Вт. Иначе он перегреется и выйдет из строя.

При последовательном соединении общее сопротивление резисторов является суммой сопротивлений каждого резистора в соединении:

Последовательное соединение резисторов

При параллельном соединении общее сопротивление резисторов рассчитывается по формуле:

Параллельное соединение резисторов

Остались вопросы? Напишите комментарий. Мы ответим и поможем разобраться =)

Что можно сделать из светодиодов своими руками?

Это вопрос очень интересный. И если отвечать на него развернуто, то на это уйдет очень много времени. Наиболее частое применение световых диодов – это подсветка подвесных и натяжных потолков, рабочей зоны на кухне или даже клавиатуры компьютера.

Мнение эксперта
Игорь Мармазов
Инженер-проектировщик ЭС, ЭМ, ЭО (электроснабжение, электрооборудование, внутреннее освещение) ООО «АСП Северо-Запад»

“Для работы таких элементов необходим стабилизатор питания или контроллер. Его можно взять даже со старой китайской гирлянды. Многие «умельцы» пишут, что достаточно обычного понижающего трансформатора, но это не так. В этом случае диоды будут моргать.”

Стабилизатор для диодных ламп – подобный можно спаять самостоятельно

Стабилизатор тока – какую функцию он выполняет

Стабилизатор для светодиодов – это источник питания, который понижает напряжение и выравнивает ток. Другими словами, создает условия для нормальной работы элементов. При этом он защищает от повышения или падения напряжения на светодиодах. Существуют стабилизаторы, которые могут не только регулировать напряжение, обеспечивая плавное затухание световых элементов, но и управлять режимами цвета или мерцания. Они называются контроллерами. Подобные устройства можно увидеть на гирляндах. Так же они продаются в магазинах электротехники для коммутации с RGB-лентами. Такие контроллеры оснащаются пультами дистанционного управления.

Схема такого устройства не сложна, и при желании простейший стабилизатор можно изготовить и своими руками. Для этого понадобятся лишь небольшие знания в радиоэлектронике и умение держать в руках паяльник.

Схема подключения дневных ходовых огней на автомобиле

Дневные ходовые огни на автомобиль

Применение световых диодов в автомобильной промышленности довольно распространено. К примеру, ДХО изготавливаются исключительно с их помощью. Но если авто не оснащено ходовыми огнями, то их приобретение может ударить по карману. Многие автолюбители обходятся дешевой светодиодной лентой, но это не очень удачная мысль. Особенно, если сила ее светового потока невелика. Неплохим выходом может стать приобретение самоклеящейся ленты на диодах «Cree».

Вполне можно сделать ДХО и при помощи уже вышедших из строя, поместив внутрь старых корпусов новые, мощные диоды.

Важно! Дневные ходовые огни созданы именно для того, чтобы авто было заметно днем, а не ночью. Нет смысла проверять, как они будут светить, в темное время суток

ДХО должны быть заметны при свете солнца.
Такую рекламу легко можно сделать самостоятельно

Мигающие светодиоды – для чего это нужно?

Неплохим вариантом использования подобных элементов станет рекламное табло. Но если оно будет статично светиться, то это не привлечет должного внимания. Основной задачей является сборка и спайка щита – для этого нужны некоторые навыки, приобрести которые несложно. После сборки можно вмонтировать контроллер от той же гирлянды

В результате получается мигающая реклама, которая явно привлечет внимание

Цветомузыка на световых диодах – сложно ли ее сделать

Это работа уже не для новичков. Для того, чтобы собрать полноценную цветомузыку своими руками нужен не только точный расчет элементов, но и знания радиоэлектроники. Но все же простейший ее вариант вполне по силам каждому.

Простейшая цветомузыка – осталось подключить датчик звука

В магазинах радиоэлектроники всегда можно найти датчик звука, да и во многих современных выключателях он есть (свет по хлопку). Если у Вас есть светодиодная лента и стабилизатор, то пустив с блока питания «+» на полосу через подобную хлопушку можно добиться желаемого результата.

Индикатор напряжения: что делать, если он перегорел

Современные индикаторные отвертки состоят как раз из светового диода и сопротивлений с изолятором. Чаще всего это эбонитовая вставка. При перегорании элемента внутри его вполне можно заменить на новый. А цвет уже будет выбирать сам умелец.

Этот диод можно с легкостью заменить при желании

Еще один из вариантов – это изготовление прозвонки цепи. Для этого понадобится 2 пальчиковых батарейки, провода и световой диод. Соединив элементы питания последовательно, одну их ножек элемента припаиваем к плюсу батареи. Провода будут идти от другой ножки и от минуса батареи. В итоге при замыкании диод засветится (если полярность не перепутать).

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector