Как проверить кт117а мультиметром?

Цветомузыкальная приставка на П213.

Очень несложную цветомузыкальную приставку можно собрать
на трех транзистрах П213. Три раздельных усилительных каскада предназначены
для усиления трех полос звуковой частоты. Каскад на транзисторе VT1 усиливает
сигнал на частоте свыше 1000Гц, на транзисторе VT2 – от 1000 до 200Гц,
на транзисторе VT3 – ниже 200гЦ. Разделение частот осуществляется простыми RC- фильтрами.

Входной сигнал берется с выхода акустических колонок. Его уровень
регулируется с помощью потенциометра R1. Для подстройки
уровня яркости каждого канала используются подстроечные резисторы R3, R5, R7.
Смещение на базах транзисторов определяется значениями резисторов R2, R4, R6. Нагрузкой
каждого каскада являются две параллельно включенные лампочки (6,3 В х 0,28 А). Питается
схема от блока питания с выходным напряжением 8-9 В и максимальным током свыше 2А.

Транзисторы П213 могут иметь значительный разброс по усилению тока.
Поэтому, значения резисторов R2, R4, R6 необходимо подбирать для каждого каскада — индивидуально. Ток коллектора при этом настраивается на такую величину, чтобы нити накала ламп немного светились в отсутствии входного
сигнала.
При этом транзисторы обязательно будут греться. Стабильность работы
германиевых полупроводниковых приборов очень зависит от температуры.
Поэтому, необходимо установить П213 на радиаторы — площадью от 75 кв.см.

Транзисторы КТ3107А, КТ3107Б, КТ3107В,КТ3107Г,КТ3107Е, КТ3107Д.

Транзисторы КТ3107 — кремниевые, усилительные маломощные
высокочастотные, структуры p-n-p.

Применяются в усилительных и генераторных схемах.
Корпус пластиковый — , с гибкими выводами.
Масса — около 0,5 г.
Маркировка буквенно — цифровая, либо символьная или цветовая — на боковой поверхности корпуса.

При символьной маркировке, значек — равнобедреный треугольник на боковой поверхности, слева сверху определяет тип(КТ3107).
При цветовой кодировке, пятнышко светло- голубого цвета слева вверху определяет тип(КТ3107).
Цветовое пятно сверху справа определяет группу: Бордовое — группа А(КТ3107А). Желтое — группа Б(КТ3107Б).Темно-зеленое — группа В(КТ3107В). Голубое — группа Г(КТ3107Г).Синие — группа Д(КТ3107Д).Цвета «электрик» — группа Е(КТ3107Е).Светло-зеленое — группа Ж(КТ3107Ж).Зеленое — группа И(КТ3107И).Красное — группа К(КТ3107К).Серое — группа Л(КТ3107Л).

Цоколевка КТ3107Б — на рисунке ниже.

Наиболее важные параметры.

Коэффициент шума при напряжении коллектор-база 5 в, токе коллектора 0,2мА на
частоте 1кГц: У транзисторов КТ3107А,КТ3107Б, КТ3107В, КТ3107Г,КТ3107Д,
КТ3107И, КТ3107К — не более 10дб.
У транзисторов КТ3107Е,КТ3107Ж, КТ3107Л
— не более 4дб.

Коэффициент передачи тока. У транзисторов КТ3107А, КТ3107В — от 70, до 140.
У транзисторов КТ3107Б, КТ3107Г, КТ3102Е — от 120, до 220.
У транзисторов КТ3107Д, КТ3107Ж, КТ3107И — от 180, до
460.
У транзисторов КТ3107К, КТ3107Л — от 380, до 800.

Максимальное напряжение коллектор — эмиттер.

У транзисторов КТ3107А, КТ3107Б, КТ3107И — 45в.
У транзисторов КТ3102В, КТ3107Г, КТ3107К, КТ3102Д — 25в.
У транзистора КТ3107Л, КТ3107Ж, КТ3107Л — 20в.

Максимальный постоянный ток коллектора — 100мА, импульсный — 200мА

Рассеиваемая мощность коллектора — 300мВт.

Граничная частота коэффициента передачи
тока — 200 МГц.

Напряжение насыщения коллектор-эмиттер При коллекторном токе 100 мА и токе базы 5 мА
— 0,5в.
При коллекторном токе 10 мА и токе базы 0,5 мА
— 0,2в.

Напряжение насыщения база-эмиттер. При коллекторном токе 100 мА и токе базы 5 мА
— 1в.
При коллекторном токе 10 мА и токе базы 0,5 мА
— 0,8в.

Обратный ток колектора.
При напряжении коллектор-база 20 в не более 0,1 мкА.

Обратный ток эмиттера.
При напряжении эмиттер-база 5 в не более 0,1 мкА.

Емкость коллекторного перехода
при напряжении коллектор-база 10 в — 70-150 пФ.

Транзистор комплиментарный КТ3107 — .

Зарубежные аналоги транзисторов КТ3107.

КТ3107А — 2N5086
КТ3107Б — BC560A
КТ3107В — 2SC828
КТ3107Г — BC308A
КТ3107Д — 2SA564
КТ3107Е — BC309B

На главную страницу

Использование каких — либо материалов этой страницы,
допускается при наличии ссылки на сайт «Электрика это просто».

Зарядное устройство из блока питания

Для сбора простого зарядного устройства своими руками, необходим самый обыкновенный блок питания от старого компьютера и немного знаний в области радиотехники. При этом характеристики прибора будут очень даже неплохими. С помощью подобного устройства можно заряжать аккумуляторные батареи током не более 10 А, при этом имеется возможность регулировки тока и напряжения заряда.

Основным условием является блок питания с контроллером TL494. Чтобы создать автомобильную зарядку своими руками из блока питания компьютера, необходимо собрать схему, которая представлена ниже на картинке.

Далее представим алгоритм для доработки операции:

  1. Откусить провода шин питания, кроме желтый и черных.
  2. Произвести соединение желтых проводов между собой и отдельно черных, с учетом полюса «+» и «-» (отталкиваясь от данных на схеме).
  3. Перерезать все дорожки, которые ведут к выводам контроллера 1, 14, 15 и 16.
  4. Произвести установку на кожух блока питания переменных резисторов, номинал которых будет соответствовать 10 и 4,4 кОм, что необходимо для регулировки напряжения и тока зарядки.
  5. При помощи навесного монтажа собрать схему, показанную на картинке выше.

В случае правильного монтажа, на этом доработку можно считать завершенной. Останется только добавить вольтметр, амперметр и провода с крокодильчиками для подключения к батарее.

Имея небольшие знания и умения в области электрики и радиотехнологии, можно с легкостью разобраться с задачей создания зарядного устройства в домашних условиях

Важно соблюдать нюансы, и обращать внимания на мелочи, так как даже банальное несовпадение проводов или же путаница в полюсах может привести устройство в негодность

Простой регулятор мощности на симисторе своими руками

В завершении статьи приведем пример простейшего регулятора мощности. В принципе, можно собрать любую из приведенных выше схем (наиболее упрощенный вариант был приведен на рисунке 2). Для этого прибора даже не обязательно делать печатную плату, устройство может быть собрано навесным монтажом. Пример такой реализации показан на рисунке ниже.

Самодельный регулятор мощности

Использовать данный регулятор можно в качестве диммера, а также управлять с его помощью мощными электронагревательными устройствами. Рекомендуем подобрать схему, в которой для управления используется полупроводниковый ключ с соответствующими току нагрузки характеристиками.

Транзисторы — купить… или найти бесплатно.

Где сейчас можно найти советские транзисторы? В основном здесь два варианта — либо
купить, либо — получить бесплатно, в ходе разборки старого электронного хлама.

Во время промышленного коллапса начала 90-х, образовались довольно значительные
запасы некоторых электронных комплектующих. Кроме того, полностью производство отечественных электронных никогда не прекращалось и не прекращается по сей день.
Это и обьясняет тот факт, что очень многие детали прошедшей эпохи, все таки
— можно купить. Если же нет — всегда имеются более-менее современные импортные аналоги.
Где и как проще всего купить транзисторы? Если получилось так, что поблизости от вас нет специализированного магазина, то можно попробовать приобрести необходимые детали, заказав их по почте.
Сделать это можно зайдя на сайт-магазин, например -«Гулливер».

Если же у вас, имеется какая-то старая, ненужная техника — можно попытаться добыть транзисторы (и другие детали) из нее.
Транзисторы КТ368 иногда можно найти
в УКВ блоках приемников Рига, Океан, Вега и т. д., но особенно много их в осциллографе С1-118.

На главную страницу

Использование каких — либо материалов этой страницы,
допускается при наличии ссылки на сайт «Электрика это просто».

Транзисторы — купить… или найти бесплатно.

Где сейчас можно найти советские транзисторы? В основном здесь два варианта — либо
купить, либо — получить бесплатно, в ходе разборки старого электронного хлама.

Во время промышленного коллапса начала 90-х, образовались довольно значительные
запасы некоторых электронных комплектующих. Кроме того, полностью производство отечественных электронных никогда не прекращалось и не прекращается по сей день.
Это и обьясняет тот факт, что очень многие детали прошедшей эпохи, все таки
— можно купить. Если же нет — всегда имеются более-менее современные импортные аналоги.
Где и как проще всего купить транзисторы? Если получилось так, что поблизости от вас нет специализированного магазина, то можно попробовать приобрести необходимые детали, заказав их по почте.
Сделать это можно зайдя на сайт-магазин, например -«Гулливер».

Если же у вас, имеется какая-то старая, ненужная техника — можно попытаться добыть транзисторы (и другие детали) из нее.
Транзисторы П213 можно найти радиоле Бригантина, приемнике ВЭФ Транзистор 17, приемниках Океан, Рига 101,
Рига 103, Урал Авто-2.

Транзисторы КТ815 в приемниках Абава РП-8330, Вега 342, магнитофонах «Азамат»(!), Весна 205-1, Вильма 204-
стерео и т. д.

На главную страницу

Использование каких — либо материалов этой страницы,
допускается при наличии ссылки на сайт «Электрика это просто».

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Схема регулятора мощности для индуктивной нагрузки

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности

Данное устройство делает возможным использование регуляторов на полупроводниковых ключах для управления индукционной нагрузкой.

Транзисторы КТ815

Транзисторы КТ815 — кремниевые, мощные,
низкочастотные, структуры — n-p-n.

Применяются в усилительных и генераторных схемах.
Корпус пластмассовый, с гибкими выводами.
Масса — около 1 г.
Маркировка буквенно — цифровая, на боковой поверхности корпуса, может
быть двух типов.

Кодированая четырехзначная маркировка в одну строчку и
некодированная — в две.
Первый знак в кодированной маркировке КТ815 цифра 5, второй знак — буква, означающая класс.
Два следующих знака, означают месяц и год выпуска.
В некодированной маркировке месяц и год указаны в верхней строчке.
На рисунке ниже — цоколевка и маркировка КТ815.

Параметры тиристора КУ 202

Параметр Обозначение Еди-
ница
Тип тиристора
КУ202А КУ202Б КУ202В КУ202Г
Постоянный ток в закрытом состоянии Iз. с мА 10 10 10 10
Постоянный обратный ток при Uобр max Iобр мА 10 10 10 10
Отпирающий постоянный ток управления Iу. от мА 200 200 200 200
Отпирающее постоянное напряжение управления Uу. от В 7 7 7 7
Напряжение в открытом состоянии Uос В 1,5 1,5 1,5 1,5
Неотпирающее постоянное напряжение управления Uу. нот В 0,2 0,2 0,2 0,2
Время включения tвкл мкс 10 10 10 10
Время выключения tвыкл мкс 150 150 150 150
Предельно допустимые параметры            
Постоянное напряжение в закрытом состоянии Uз. с max В 25 25 50 50
Постоянное обратное напряжение Uобр max В
Постоянное обратное напряжение управления Uу. обр max В 10 10 10 10
Минимальное прямое напряжение в закрытом состоянии Uз. с min В
Постоянный ток в открытом состоянии Iос min А 10 10 10 10
Импульсный ток в открытом состоянии Iос. и min А 50 50 50 50
Постоянный прямой ток управления Iу max А
Импульсная рассеиваемая мощность УЭ Pу. и max Вт
Средняя рассеиваемая мощность Pср max Вт 20 20 20 20
Максимальная температура окружающей среды Tmax °С +85 +85 +85 +85
Минимальная температура окружающей среды Tmin °С -60 -60 -60 -60
Параметр Обозначение Еди-
ница
Тип тиристора
КУ202Д КУ202Е КУ202Ж КУ202И
Постоянный ток в закрытом состоянии Iз. с мА 10 10 10 10
Постоянный обратный ток при Uобр max Iобр мА 10 10 10 10
Отпирающий постоянный ток управления Iу. от мА 200 200 200 200
Отпирающее постоянное напряжение управления Uу. от В 7 7 7 7
Напряжение в открытом состоянии Uос В 1,5 1,5 1,5 1,5
Неотпирающее постоянное напряжение управления Uу. нот В 0,2 0,2 0,2 0,2
Время включения tвкл мкс 10 10 10 10
Время выключения tвыкл мкс 150 150 150 150
Предельно допустимые параметры            
Постоянное напряжение в закрытом состоянии Uз. с max В 120 120 10 10
Постоянное обратное напряжение Uобр max В 240 240
Постоянное обратное напряжение управления Uу. обр max В 10 10
Минимальное прямое напряжение в закрытом состоянии Uз. с min В
Постоянный ток в открытом состоянии Iос min А 10 10 10 10
Импульсный ток в открытом состоянии Iос. и min А 50 50 50 50
Постоянный прямой ток управления Iу max А
Импульсная рассеиваемая мощность УЭ Pу. и max Вт
Средняя рассеиваемая мощность Pср max Вт 20 20 20 20
Максимальная температура окружающей среды Tmax °С +85 +85 +85 +85
Минимальная температура окружающей среды Tmin °С -60 -60 -60 -60
Параметр Обозначение Еди-
ница
Тип тиристора
КУ202К КУ202Л КУ202М КУ202Н
Постоянный ток в закрытом состоянии Iз. с мА 10 10 10 10
Постоянный обратный ток при Uобр max Iобр мА 10 10 10 10
Отпирающий постоянный ток управления Iу. от мА 200 200 200 200
Отпирающее постоянное напряжение управления Uу. от В 7 7 7 7
Напряжение в открытом состоянии Uос В 1,5 1,5 1,5 1,5
Неотпирающее постоянное напряжение управления Uу. нот В 0,2 0,2 0,2 0,2
Время включения tвкл мкс 10 10 10 10
Время выключения tвыкл мкс 150 150 150 150
Предельно допустимые параметры            
Постоянное напряжение в закрытом состоянии Uз. с max В 10 10 10 10
Постоянное обратное напряжение Uобр max В 360 360 480 480
Постоянное обратное напряжение управления Uу. обр max В
Минимальное прямое напряжение в закрытом состоянии Uз. с min В
Постоянный ток в открытом состоянии Iос min А 10 10 10 10
Импульсный ток в открытом состоянии Iос. и min А 50 50 50 50
Постоянный прямой ток управления Iу max А
Импульсная рассеиваемая мощность УЭ Pу. и max Вт
Средняя рассеиваемая мощность Pср max Вт 20 20 20 20
Максимальная температура окружающей среды Tmax °С +85 +85 +85 +85
Минимальная температура окружающей среды Tmin °С -60 -60 -60 -60

Схема регулятора мощности на тиристоре

Сама схема проста до безобразия. Я думаю, что не стоит объяснять принцип её работы:

Детали устройства:

  • Диоды; КД 202Р, четыре выпрямительных диода на ток не меньше 5 ампер
  • Тиристор; КУ 202Н, или другой с током не меньше 10 ампер
  • Транзистор; КТ 117Б
  • Резистор переменный; 10 Ком, один
  • Резистор подстроечный; 1 Ком, один
  • Резисторы постоянные; 39 Ком, мощностью два ватта, два штуки
  •  Стабилитрон: Д 814Д, один
  • Резисторы постоянные; 1,5 Ком, 300 Ом, 100 Ком
  • Конденсаторы; 0,047 Мк, 0,47 Мк
  • Предохранитель; 10 А, один

Тиристорный регулятор мощности своими руками

Готовое устройство, собранное по этой схеме выглядит вот так:

Так как деталей в схеме используется не очень много, можно применить навесной монтаж. Я же использовал печатный:

Регулятор мощности собранный по этой схеме очень надежен. Сначала этот тиристорный регулятор использовался для вытяжного вентилятора. Эту схему я реализовал около 10 лет назад. Первоначально я не использовал радиаторы охлаждения, так как ток потребления вентилятора очень мал. Затем я стал использовать эту электронную самоделку для пылесоса мощностью 1600 ватт. Без радиаторов силовые детали нагревались значительно, рано или поздно они вышли бы из строя. Но и без радиаторов это устройство проработало целых 10 лет. Пока не пробило тиристор. Первоначально я использовал тиристор марки ТС-10:

Теперь я решил поставить теплоотводы. Не забываем нанести тонкий слой теплопроводящей пасты КПТ-8 на тиристор и 4 диода:

Если у вас не окажется однопереходного транзистора КТ117Б:

то его можно заменить двумя биполярными собранными по схеме:

Сам я такую замену не производил, но должно получиться.

По данной схеме в нагрузку поступает постоянный ток. Это не критично, если нагрузка активная. Например: лампы накаливания, нагревательные тэны, паяльник, пылесос, электродрель и другие устройства, имеющие коллектор и щетки. Если же вы планируете, данный регулятор использовать для реактивной нагрузки, например электродвигателя вентилятора, то нагрузку стоит включить перед диодным мостом,  как это показано на схеме:

Резистором R7 регулируют мощность на нагрузке:

а резистором R4 устанавливают границы интервала регулирования:

При таком положении движка резистора на лампочку приходит  80 вольт:

Внимание! Будьте внимательны, эта самоделка не имеет трансформатора, поэтому некоторые радиодетали могут находиться под высоким потенциалом сети. Будьте осторожны при настройке регулятора мощности.. Обычно тиристор не открывается из-за малости напряжение на нём и скоротечности процесса, а если и откроется, то будет закрыт при первом же переходе напряжения сети через 0

Таким образом, использование однопереходного транзистора решает задачу принудительной разрядки накопительного конденсатора, в конце каждого полупериода питающей сети

Обычно тиристор не открывается из-за малости напряжение на нём и скоротечности процесса, а если и откроется, то будет закрыт при первом же переходе напряжения сети через 0. Таким образом, использование однопереходного транзистора решает задачу принудительной разрядки накопительного конденсатора, в конце каждого полупериода питающей сети.

Собранное устройство я поместил в старый ненужный корпус от трансляционного радио. Переменный резистор R7 я установил на штатное место. Осталось поставить на него ручку и проградуировать шкалу напряжения:

Корпус слегка великоват, но зато тиристор и диоды охлаждаются просто великолепно:

С боку устройства я поместил розетку, чтобы можно было подключить вилку от любой нагрузки. Для подключения собранного устройство к электросети я использовал шнур от старого утюга:

Как я говорил ранее, этот тиристорный регулятор мощности очень надёжен. Я им пользуюсь уже не один год. Схема очень проста, её сможет повторить даже начинающий радиолюбитель.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы

Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

Форма сигнала на выходе регулятора мощности: А – 100%, В – 50%, С – 25%

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В

Обозначения:

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Наиболее важные параметры.

Коэффициент передачи тока

У транзисторов КТ815А, КТ815Б, КТ815В от 30.
У транзисторов КТ815Г — от 20.

Максимально допустимое напряжение коллектор-эмиттер:
У транзисторов КТ815А
— 25 в.
У транзисторов КТ815Б
— 45 в.
У транзисторов КТ815В
— 60 в.
У транзисторов КТ815Г
— 80 в.

Максимальный ток коллектора — 1,5 А постоянный, 3 А — импульсный.

Рассеиваемая мощность коллектора.
— 10 Вт на радиаторе, 1 Вт — без.

Обратный ток колектора.
При напряжении коллектор-база 40 в — 50 мкА

Сопротивление базы.
При напряжении эмиттер-база 5 в, токе коллектора 5 мА, на частоте 800 кГц
— не более 800 Ом.

Напряжение насыщения коллектор-эмиттер при коллекторном токе 0,5А и базовом 0,05А
— не более

0,6 в.

Напряжение насыщения база-эмиттер при коллекторном токе 0,5А и базовом 0,05А
— не более

1,2 в.

Емкость коллекторного перехода при частоте 465 кГц и
напряжении коллектор-база 5в — 60 пФ.

Граничная частота передачи тока — 3 МГц.

Recommended Posts

Для улучшения контакта работающих элементов с радиатором, нужно использовать теплопроводные пасты. Для этой цели и предназначается зарядные устройства.

Вольтметр РV1 — любой постоянного тока со шкалой на 16Вольт.

В схеме применяется транзистор с большим коэффициентом усиления Спасибо за ответ.

Вместо NE можно использовать российский аналог — таймер ВИ1. Оборудование предназначается для зарядки автомобильных аккумуляторов с напряжением 14,5 Вольт. Что же тогда тупит.

Самоделки, хобби, увлечения.

Включите устройство зарядное в сеть, при этом должен включиться индикатор. Поискав в интернете, наткнулся на промышленную схему зарядного устройства с регулирующими тиристорами.

Устройство УЗ-ПА имеет плавную установку зарядного тока, электронную схему защиты, обеспечивающую сохранность аккумуляторной батареи при перегрузках, коротких замыканиях и неправильной полярности подключения выходных зажимов. Время, за которое конденсатор С1 будет заряжаться до переключения транзистора, выставляется переменным резистором R7, которым, собственно, и выставляется величина зарядного тока аккумулятора.

‘).f(b.get(,!1),b,»h»,).w(«

Длительность бестоковой паузы зависит от степени заряженности аккумуляторной батареи. Этот режим позволяет не только восстанавливать засульфатированные батареи аккумуляторов, но и проводить профилактическую обработку исправных. Время, в течение которого конденсатор С1 заряжается до переключения можно регулировать переменным резистором R1

Обратите внимание, что в схеме стоит тиристор КУ, он немного слабоват, поэтому чтобы не допустить пробоя импульсами большого тока его необходимо установить на радиатор

А Для подзарядки применяется напряжение сети в В. Восстановление и зарядка аккумулятора.
Зарядное устройство на тиристоре

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector