Электромагнитная бомба: принцип действия и защита

Измерение магнитного поля в области переменного электрического

Сделаем оценку нормальной составляющей напряженности электрического поля E вблизи центра перезаряжаемой пластины. Используем известную из электростатики формулу:

E = |grad(φ)| ~ φ/d (1)

Где φ — потенциал пластины относительно земли, d – расстояние от точки измерения до пластины. Максимально возможная амплитуда импульсов с ГИ составляла 50 В. Напряженность электрического поля при этом на расстоянии 1 мм от пластины т.о. E ~ 5·103 В/м.

Согласно четвертому уравнению Максвелла, вокруг области переменного электрического поля должно существовать переменное магнитное, напряженность которого в воздухе задается выражением:

rot(B) = dE/dt (2)

Разобъем такую область на кусочки. Вокруг каждого, согласно (2), должны возникать кольцевые магнитные поля- см. рис. 1. 

Затем, суммируя магнитные поля соседних кусочков, получим ноль. Т.о. в области однородного переменного электрического поля магнитного наблюдаться не должно. Однако, в реальных условиях необходимо учитывать граничный эффект. Область максимального магнитного поля над плоской пластиной должна иметь вид замкнутого контура- там, где максимален градиент электрического поля, см. рис. 1.

Рис. 1. Область переменного электрического поля. Линии E направлены на нас. В центральной части области поле E однородно, ближе к краям спадает до .

Кроме того над пластиной теоретически может происходить ослабление магнитного поля за счёт наложения магнитных полей токов смещения, текущих с обратной от пластины стороны. Для учёта чего магнитное поле измерялось также вблизи торцов пластины.

С другой стороны, как известно из электродинамики , электромагнитная волна в ближней зоне излучения еще не является сформированной, электрическое и магнитное поля в ней с высокой точностью изменяются независимо. Таким образом, уравнения Максвелла для этой зоны должны быть не применимы. И понятие тока смещения теряет физический смысл. Для разрешения этого противоречия проведены описанные ниже эксперименты.

На рис. 2 представлена функциональная схема экспериментальной установки.

Рис. 2. Схема экспериментальной установки для наблюдения переменного магнитного поля в области переменного электрического.

С генератора импульсов Г5- 82 производилась подача прямоугольных импульсов положительной полярности (ПИПП) на медную пластину размером 115·150·1 мм. Вокруг пластины возникало переменное электрическое поле. Наблюдения магнитного поля вблизи пластины производились в ближней зоне. Для измерения магнитного поля вблизи пластины использовался датчик Холла Honeywell 840G- М. Датчик способен регистрировать магнитные поля до 840 Гс по одной координате. Время отклика датчика составляет 3 мкс, средняя чувствительность при НКУ 2,4 мВ/Гс. Далее сигнал усиливался на широкополосном усилителе УЗ-29 и подавался на осциллограф С1-73. ПИПП формировались длительностями 1 мкс ; 1 ,10, 100 мс и с задержками 6 мкс; 6, 60, 600 мс соответственно.

Производились измерения магнитного поля по трем координатам над разными участками пластины. Минимальное расстояние до датчика составляло 1 мм при измерении продольных составляющих магнитного поля и до 0.2 мм при измерении поперечной. По результатам всех измерений B = 0 ± 1 Гс. Плотность энергии магнитного поля таким образом составляет не более ~ 10-10 от плотности энергии электрического.

Во втором эксперименте вместо медной пластины использовался стальной шар диаметром 22 мм. Длительности импульсов составляли 1, 10 мс. Результаты измерения магнитного поля те же. Применим четвертое уравнение Максвелла для оценки магнитного поля вблизи поверхности шара. Ввиду сферической симметрии магнитные поля кусочков пространства над поверхностью перезаряжаемого шара все, кроме области токового подвода, целиком вычитаются. Т.о., в рамках классической электродинамики магнитное поле токов смещения вокруг шара и должно быть нулевым. Магнитное поле реальных токов, протекающих по шару, не наблюдается ввиду его малости: суммарная величина токов проводимости, текущих от ГИ по пластине или шару, не превышала 0,05 А.

Эксперимент с шаром не является столь показательным, как с пластиной. Однако, он наводит на мысль о том, что в пространстве, помимо электромагнитных волн могут распространяться волны электрического поля, т.н. электродинамические волны. Эти волны имеют продольный характер, т.к. электрическое поле- скалярное. Затухают они, очевидно, обратно пропорционально квадрату расстояния, и скорость изменения электрического поля в такой волне ограничена инерционностью среды распространения. Экспериментально такие волны наблюдались в работе .

История исследований

  • Первые волновые теории света (их можно считать старейшими вариантами теорий электромагнитного излучения) восходят по меньшей мере к временам Гюйгенса, когда они получили уже и заметное количественное развитие. В 1678 году Гюйгенс выпустил «Трактат о свете» (фр. ) — набросок волновой теории света. Другое замечательное сочинение он издал в 1690 году; там он изложил качественную теорию отражения, преломления и двойного лучепреломления в исландском шпате в том самом виде, как она излагается теперь в учебниках физики. Сформулировал так называемый принцип Гюйгенса, позволяющий исследовать движение волнового фронта, впоследствии развитый Френелем (принцип Гюйгенса — Френеля) и сыгравший важную роль в волновой теории света, и теории дифракции. В —1670-е годы существенный теоретический и экспериментальный вклад в физическую теорию света внесли также Ньютон и Гук.
  • Многие положения корпускулярно-кинетической теории М. В. Ломоносова (—1750-е годы) предвосхищают постулаты электромагнитной теории: вращательное («коловратное») движение частиц как прообраз электронного облака, волновая («зыблющаяся») природа света, общность её с природой электричества, отличие от теплового излучения и т. д.
  • В 1800 году английский учёный У. Гершель открыл инфракрасное излучение.
  • В 1801 году Риттер открыл ультрафиолетовое излучение.
  • Существование электромагнитных волн предсказал английский физик Фарадей в 1832 году.
  • В 1865 году английский физик Дж. Максвелл завершил построение теории электромагнитного поля классической (неквантовой) физики, строго оформив её математически, и на её основе получив твёрдое обоснование существования электромагнитных волн, а также найдя скорость их распространения (неплохо совпадавшую с известным тогда значением скорости света), что позволило ему обосновать и предположение о том, что свет является электромагнитной волной.
  • В 1888 году немецкий физик Герц подтвердил теорию Максвелла опытным путём. Интересно, что Герц не верил в существование этих волн и проводил свой опыт с целью опровергнуть выводы Максвелла.
  • 8 ноября 1895 года Рентген открыл электромагнитное излучение (получившее впоследствии название рентгеновского) более коротковолнового диапазона, чем ультрафиолетовое.
  • В конце XIX столетия белорусский ученый, профессор Я. Наркевич-Иодко впервые в мире исследовал возможности использования электромагнитного излучения газоразрядной плазмы для электрографии (визуализации) живых организмов, то есть для нужд практической медицины.
  • В 1900 году Поль Виллар при изучении излучения радия открыл гамма-излучение.
  • В 1900 году Планк при теоретическом исследовании проблемы излучения абсолютно чёрного тела открывает квантованность процесса электромагнитного излучения. Эта работа стала началом квантовой физики.
  • Начиная с 1905 года Эйнштейн, а затем и Планк публикуют ряд работ, приведших к формированию понятия фотона, что стало началом создания квантовой теории электромагнитного излучения.
  • Дальнейшие работы по квантовой теории излучения и его взаимодействия с веществом, приведшие в итоге к формированию квантовой электродинамики в её современном виде, принадлежат ряду ведущих физиков середины XX века, среди которых можно выделить, применительно именно к вопросу квантования электромагнитного излучения и его взаимодействия с веществом, кроме Планка и Эйнштейна, Бозе, Бора, Гейзенберга, де Бройля, Дирака, Фейнмана, Швингера, Томонагу.

Шкала электромагнитных волн

Электромагнитная волна обладает всеми характеристиками волн, то есть длина волны и частота. Для обычных механических волн существует взаимосвязь между скоростью волны, длиной волны и частотой. Такая же связь наблюдается и у электромагнитных волн. Рассмотрим уравнение для механической волны:

υ = λ · ν

Скорость волны равна длине волны, умноженной на частоту. Для электромагнитных волн скорость распространения – величина постоянная и равная c = 3·10 8 м/с, то есть

c = λ · ν

Для электромагнитных волн произведение длины волны и частоты всегда остается величиной постоянной.

Рис. 1. Шкала электромагнитных волн (Источник)

Возьмем шкалу (рис. 1) и отметим на ней частоту, по направлению шкалы происходит возрастание частоты, вторая шкала соответствует длине волны, и на ней мы видим

уменьшение длины волны. Для одной и той же электромагнитной волны произведение частоты на длину волны всегда будет оставаться величиной постоянной.

Для всех электромагнитных волн скорость будет оставаться постоянной: 3·10 8 м/с.

Такое распределение позволяет создать шкалу, по которой мы можем разложить все электромагнитные колебания по их частоте или длине волны и обсудить их свойства. По такой шкале очень удобно обсуждать вопрос происхождения электромагнитных волн, то есть как эти электромагнитные волны появляются и, соответственно, что является источником этих электромагнитных волн.

Электромагнитную шкалу можно разделить на две части: низкочастотные колебания и радиоволны. К низкочастотным колебаниям относятся те, которые производятся при помощи генератора, самым ярким представителем является переменный ток, и, соответственно, эти колебания распространяются в основном по проводам, а те электромагнитные волны, которые создаются такими колебаниями, на большие расстояния не распространяются, они очень быстро поглощаются окружающей средой.

Вторая часть – радиоволны – может быть разделена на большое количество поддиапазонов.

Это, в первую очередь, длинные волны, средние, короткие и ультракороткие волны. Каждый из этих диапазонов используется по своему назначению. Например, длинные волны очень хорошо поглощаются окружающей средой, ионосферой и поверхностью Земли, и поэтому на большие расстояния они распространяться не могут. При мощных передатчиках длинные волны используют для радиовещания. Для вещания на весь мир используются короткие волны, в результате многократного отражения они отражаются от земной поверхности и ионосферы и распространяются по всему земному шару. Ультракороткие волны распространяются в пределах прямой видимости, они достаточно плохо отражаются, но хорошо преломляются и используются для связи с космическими аппаратами или для телевидения.

Источниками для распространения радиоволн являются генераторы высокой частоты, колебательный контур Томпсона, открытый колебательный контур Герца и другие излучатели высокочастотных электромагнитных колебаний волн. Данные для электромагнитной шкалы сведены в схему, изображенную на рисунке 2.

Рис. 2. Данные электромагнитной шкалы (Источник)

Длина волны располагается по уменьшению, а частота по нарастанию.

Виды ЭМИ

В природе существует волновой способ распространения магнитных и электрических полей. Вид излучения определяют по частотному диапазону. Между видами ЭМИ границы условные.

Основные отличия видов связывают со способом их происхождения: передача антенной, излучение после нагрева, торможение электронов.

  1. Высокочастотное излучение.

Это ионизирующее излучение, к которому относят гамма и рентгеновские лучи.

  1. Среднечастотное излучение.

Это видимое световое излучение. Частотная шкала ограничивается ультрафиолетовым и инфракрасным излучением.

  1. Низкочастотное излучение.

Это диапазон микроволн и радиоволн. Такое излучение появляется у проводника с переменным током и вокруг генератора тока. В радиочастотном диапазоне излучают: оборудование телевидения, радиосвязи, радиолокации, медицины.

Для объяснения влияния видов ЭМИ на здоровье, их группируют в две категории:

  1. Ионизирующее излучение — поток частиц, которые меняют структуру атома биологического тела. Потоком создаются необратимые последствия, так как видоизменяется ДНК, например, при рентгеновском излучении.
  1. Неионизирующее излучение — это волны длиной более 1000 нм. Их энергии не хватает, чтобы разрушить структуру ткани.

Электроника на вооружении российской армии

Чтобы понять, какое место занимает тема радиоэлектронной борьбы в военно-технической стратегии российского военного ведомства, достаточно посмотреть Госпрограмму вооружений до 2020 года. Из 21 трлн рублей общего бюджета ГПВ 3,2 трлн (около 15%) планируется направить на разработку и производство систем нападения и защиты, использующих источники электромагнитного излучения. Для сравнения, в бюджете Пентагона, по оценке экспертов, эта доля значительно меньше – до 10%. В общем заметно прибавилась заинтересованность государства в оружии на новых физических принципах. Программы по нему сейчас носят приоритетный характер. А теперь давайте посмотрим на те изделия, которые дошли до серии и поступили на вооружение за последние несколько лет.

Мобильные комплексы радиоэлектронной борьбы «Красуха-4» подавляют спутники-шпионы, наземные радары и авиационные системы АВАКС, полностью закрывает от радиолокационного обнаружения на 300 км, а также может нанести радиолокационное поражение вражеским средствам РЭБ и связи. Работа комплекса основывается на создании мощных помех на основных частотах радаров и прочих радиоизлучающих источников.

Средство радиоэлектронной борьбы морского базирования ТК-25Э обеспечивает эффективную защиту кораблей различного класса. Комплекс предназначен для обеспечения радиоэлектронной защиты объекта от радиоуправляемого оружия воздушного и корабельного базирования путем создания активных помех. Предусмотрено сопряжение комплекса с различными системами защищаемого объекта, такими как навигационный комплекс, радиолокационная станция, автоматизированная система боевого управления. Аппаратура ТК-25Э обеспечивает создание различных видов помех с шириной спектра от 60 до 2000 МГц, а также импульсных дезинформирующих и имитационных помех с использованием копий сигналов. Комплекс способен одновременно анализировать до 256 целей. Оснащение защищаемого объекта комплексом ТК-25Э в несколько раз снижает вероятность его поражения.

Многофункциональный комплекс «Ртуть-БМ» разработан и выпускается на предприятиях КРЭТ с 2011 года и является одной из наиболее современных систем РЭБ. Основное назначение станции – защита живой силы и техники от одиночного и залпового огня артиллерийских боеприпасов, оснащенных радиовзрывателями. Отметим, что радиовзрывателями сейчас оснащены до 80% западных снарядов полевой артиллерии, мин и неуправляемых реактивных снарядов и почти все высокоточные боеприпасы, эти достаточно простые средства позволяют защитить от поражения войска в том числе непосредственно в зоне контакта с противником.

Концерн «Созвездие» производит серию малогабаритных (автономных) передатчиков помех серии РП-377. С их помощью можно глушить сигналы GPS, а в автономном варианте, укомплектованном источниками питания, ещё и расставив передатчики на некоторой площади, ограниченной только количеством передатчиков. Сейчас готовится экспортный вариант более мощной системы подавления GPS и каналов управления оружием. Она уже является системой объектовой и площадной защиты от высокоточных средств поражения. Построена она по модульному принципу, который позволяет варьировать площади и объекты защиты. Из несекретных разработок известны также изделия МНИРТИ — «Снайпер-М» «И-140/64» и «Гигаватт», выполненные на базе автоприцепов. Они используются для отработки средств защиты радиотехнических и цифровых систем военного, специального и гражданского назначения от поражения ЭМИ.

История

Схематическое изображение опыта Лебедева

Впервые гипотеза о существовании светового давления была высказана И. Кеплером в XVII веке для объяснения поведения хвостов комет при пролёте их вблизи Солнца. В 1873 г. Максвелл дал теорию давления света в рамках своей классической электродинамики. Экспериментально световое давление впервые исследовал П. Н. Лебедев в 1899 г. В его опытах в вакуумированном сосуде на тонкой серебряной нити подвешивались крутильные весы, к коромыслам которых были прикреплены тонкие диски из слюды и различных металлов. Главной сложностью было выделить световое давление на фоне радиометрических и конвективных сил (сил, обусловленных разностью температуры окружающего газа с освещённой и неосвещённой стороны). Кроме того, поскольку в то время не были разработаны вакуумные насосы, отличные от простых механических, Лебедев не имел возможности проводить свои опыты в условиях даже среднего, по современной классификации, вакуума.

Путём попеременного облучения разных сторон крылышек Лебедев нивелировал радиометрические силы и получил удовлетворительное (±20 %) совпадение с теорией Максвелла. Позднее, в 1907—1910 гг. Лебедев провёл более точные опыты по изучению давления света в газах и также получил приемлемое согласие с теорией.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector