Колебательный контур

Свойства электромагнитных волн

Электромагнитная волна – это изменяющееся во времени и распространяющееся в пространстве электромагнитное поле.

Существование электромагнитных волн было теоретически предсказано английским физиком Дж. Максвеллом в 1864 году. Электромагнитные волны были открыты Г. Герцем.

Источник электромагнитной волны – ускоренно движущаяся заряженная частица – колеблющийся заряд.

Важно! Наличие ускорения – главное условие излучения электромагнитной волны. Интенсивность излученной волны тем больше, чем больше ускорение, с которым движется заряд

Источниками электромагнитных волн служат антенны различных конструкций, в которых возбуждаются высокочастотные колебания.

Электромагнитная волна называется монохроматической, если векторы ​\( \vec{E} \)​ и \( \vec{B} \)​ совершают гармонические колебания с одинаковой частотой (частотой волны).

Длина электромагнитной волны: ​\( \lambda=cT=\frac{c}{\nu}, \)​

где ​\( c \)​ – скорость электромагнитной волны, ​\( T \)​ – период, ​\( \nu \)​ – частота электромагнитной волны.

Свойства электромагнитных волн

  • В вакууме электромагнитная волна распространяется с конечной скоростью, равной скорости света 3·108 м/с.
  • Электромагнитная волна поперечная. Колебания векторов напряженности переменного электрического поля и магнитной индукции переменного магнитного поля взаимно перпендикулярны и лежат в плоскости, перпендикулярной к вектору скорости волны.
  • Электромагнитная волна переносит энергию в направлении распространения волны.

Важно! Электромагнитная волна в отличие от механической волны может распространяться в вакууме. Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени

Плотность потока или интенсивность – это электромагнитная энергия, переносимая через поверхность единичной площади за единицу времени.

Обозначение – ​\( I \)​, единица измерения в СИ – ватт на квадратный метр (Вт/м2).

Важно! Плотность потока излучения электромагнитной волны от точечного источника убывает обратно пропорционально квадрату расстояния от источника и пропорциональна четвертой степени частоты. Электромагнитная волна обладает общими для любых волн свойствами, это:

Электромагнитная волна обладает общими для любых волн свойствами, это:

  • отражение,
  • преломление,
  • интерференция,
  • дифракция,
  • поляризация.

Электромагнитная волна производит давление на вещество. Это означает, что у электромагнитной волны есть импульс.

Классификация радиоприёмников

Радиоприёмные устройства делятся по следующим признакам:

  • по основному назначению: радиовещательные, телевизионные, связные, пеленгационные, радиолокационные, для систем радиоуправления, измерительные и др.;
  • по роду работы: радиотелеграфные, радиотелефонные, фототелеграфные и т. д.;
  • по виду модуляции, применяемой в канале связи: амплитудная, частотная, фазовая, однополосная (разные виды), импульсная (разные виды);
  • по диапазону принимаемых волн, согласно рекомендациям МККР:
    • мириаметровые волны — 100-10 км, (3 кГц-30 кГц), СДВ
    • километровые волны — 10-1 км, (30 кГц-300 кГц), ДВ
    • гектометровые волны — 1000—100 м, (300 кГц-3 МГц), СВ
    • декаметровые волны — 100-10 м, (3 МГц-30 МГц), КВ
    • метровые волны — 10-1 м, (30 МГц-300 МГц), УКВ
    • дециметровые волны — 100-10 см, (300 МГц-3 ГГц), ДМВ
    • сантиметровые волны — 10-1 см, (3 ГГц-30 ГГц), СМВ
    • миллиметровые волны — 10-1 мм, (30 ГГц-300 ГГц), ММВ
    • приёмник, включающий все широковещательные диапазоны (ДВ, СВ, КВ, УКВ) называют всеволновым.
  • по принципу построения приёмного тракта: детекторные, прямого усиления, прямого преобразования, регенеративные, сверхрегенераторы, супергетеродинные с однократным, двукратным или многократным преобразованием частоты;
  • по способу обработки сигнала: аналоговые и цифровые;
  • по применённой элементной базе: на кристаллическом детекторе, ламповые, транзисторные, на микросхемах;
  • по исполнению: автономные и встроенные (в состав др. устройства);
  • по месту установки: стационарные, бортовые, носимые;
  • по способу питания: сетевое, автономное или универсальное.

Принцип работы радиоприёмников

В самом общем виде радиоприёмники СССР работали по следующей схеме:

  1. Из-за колебаний электромагнитного поля в антенне появляется переменный ток.
  2. Колебания фильтруются (селективность) для отделения информации от помех, т. е. из сигнала выделяется его важная составляющая.
  3. Полученный сигнал преобразуется в звук (в случае радиоприёмников).

По схожему принципу появляется изображение на телевизоре, передаются цифровые данные, работает радиоуправляемая техника (детские вертолёты, машинки).

Первый приёмник был больше похож на стеклянную трубку с двумя электродами и опилками внутри. Работа осуществлялась по принципу действия зарядов на металлический порошок. Приёмник обладал огромным по современным меркам сопротивлением (до 1000 Ом) из-за того, что опилки плохо контактировали между собой, и часть заряда проскакивала в воздушное пространство, где рассеивалась. Со временем эти опилки были заменены колебательным контуром и транзисторами для сохранения и передачи энергии.

В зависимости от индивидуальной схемы приёмника сигнал в нём может проходить дополнительную фильтрацию по амплитуде и частоте, усиление, оцифровку для дальнейшей программной обработки и т. д. Простая схема радиоприёмника предусматривает единичную обработку сигнала.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector