Измерение параметров тиля-смолла в домашних условиях

Три главных параметра

Оценив эти параметры, мы сможем определить, для какого оформления лучше подходит сабвуферный динамик. И как он будет играть, жестко или мягко, высокий или низкий бас.

FS — резонансная частота

Частота собственного резонанса. Замеряется она следующим образом. Динамик подвешивается в открытом пространстве, как можно дальше от различных предметов. Это делается для того, чтобы его резонанс зависел только от него самого. Низкой принято считать резонансную частоту в районе 20 Герц, а высокой – в районе 40 Герц. Данный параметр пригодится нам для расчета короба и выбора динамика.

QTS —  полная добротность

Упругость подвижной системы динамика на чистоте резонанса. Если по простому она демонстрирует затухание колебаний динамика. Чем выше этот показатель, тем слабее затухают колебания. Добротность напрямую связана с необходимым типом акустического оформления. Принято считать, что устройства с добротностью 0,3 — 0,35 – это низкодобротные сабвуферы. А высокодобротные – от 0,7 до 0,8. Зная этот параметр, можно определить для какого типа оформления лучше подходит динамик. Если динамик имеет добротность больше 1. Это free air, предназначение которого – установка в полку, открытый объём.  Для закрытого ящика подходят динамики с добротностью  0,5 – 0,6. Для фазоинвертора – 0,3 – 0,5. Рупор – менее 0,3.

 VAS — эквивалентный объём

Это возбуждаемый головкой сабвуфера закрытый объём воздуха, имеющий гибкость равную гибкости подвижной системы сабвуфера. Проще говоря, чем мягче подвижная система Саба, тем сильнее он будет сжимать воздух внутри корпуса. Кроме того, этот показатель влияет на размер диффузора. Соответственно, чем больше у нас динамик, тем он сильнее будет сжимать объём. Следовательно, и отдача у этого сабвуфера будет больше.  Обратная сторона медали – чем больше диффузор, тем больший объём короба потребуется.

Потери энергии динамиком

Устройства этого типа предназначены в первую очередь для излучения звука, воспринимаемого человеческим ухом. Передача таких колебаний в окружающую среду и является потерями энергии динамика. Однако КПД у современных динамиков обычно очень низкий. Поэтому на долю передачи звука приходится лишь небольшая часть расхода устройством энергии. Обычно таким путем происходит меньше 1 % всех потерь.

Расход на звуковые колебания в динамике является самым важным показателем. Ведь именно для передачи звука такие устройства и конструируются, и производятся. Но все же гораздо больше потерь в таком оборудовании является чисто механическими. Очень много энергии в таких устройствах тратится на трение:

  • в подвесах;

  • в магнитном зазоре;

  • об воздух и пр.

Самый же большой расход энергии в динамиках происходит в их моторе. Работают современные устройства этого типа по принципу небольших генераторов, создающих довольно-таки большое сопротивление.

Электрический и механический показатели

Рассчитываться добротность динамиков может несколькими способами

В некоторых случаях при определении этого параметра принимаются во внимание только потери на звук, а также на трение. При использовании такой методики расчета получают показатель механической добротности

Иногда при вычислениях учитываются только значения расхода на сопротивление мотора динамика. Такая добротность называется электрической. Этот показатель в динамиках обычно имеет небольшие значения. В любом случае механическая добротность в звукоизлучателях всегда превышает электрическую. Обычно такой показатель в динамиках имеет значение больше единицы.

[hide][top]Нахождение дополнительных параметров Сms, Re, Sd, Lе

Определение относительной жесткости Cms

Определение относительной жесткости описано в методике определения эквивалентного объема Vas методом добавочного массы (см. выше), и вычисляется по формуле: м/Н (метров/Ньютон) где:М – масса грузика, г;Fs – резонансная частота головки, Гц;F’s – резонансная частота головки в нагруженном состоянии под грузом М, Гц;

Нахождение сопротивления обмотки головки постоянному току Re

Сопротивление головки постоянному току Re определяется на частоте близкой к 0 Гц или измеряется и непосредственно омметром.

Нахождение площади диффузора Sd

Это так называемая эффективная излучающая поверхность диффузора. Для самых низких частот (в зоне поршневого действия) она совпадает с конструктивной и равна:
Радиусом R в данном случае будет являться половина расстояния от середины ширины резинового подвеса одной стороны до середины резинового подвеса противоположной. Это связано с тем, что половина ширины резинового подвеса также является излучающей поверхностью

Обратите внимание что единица измерения этой площади — квадратные метры. Соответственно и радиус нужно в нее подставлять в метрах

Ответы знатоков

Алексей Полубоярцев:

в статье на genealogic.narod /audio/dynamic написано:

Для определения резонансной частоты динамика его нужно подключить к выходу звуковой карты вашего компьютера (или стационар­ного усилителя мощности), положить магни­том на горизонтальную поверхность малой площади (например, кухонный табурет), диффузором кверху и включить генератор звуковых частот (при этом регуляторы тембра на усилителе должны стоять в среднем положении или отключены, т. е. его АЧХ должна быть прямолинейна (горизонтальна).

Для удобства наблюдений, если на диффузоре динамика нет никаких фабричных надписей и пометок, в центре диффу­зора можно поставить контрастную метку или маркё­ром, или наклеив небольшой кусочек бумаги (от стикера). По мере снижения звуковой частоты (кнопками «-100», «-10» и «-1») вы увидите, что диффузор на разных частотах будет колебаться с разной амплитудой, немного отличающейся по величине. Но наибольшая ампли­туда раскачивания произойдет на какой-то более низкой частоте (например 31 гц), которая и является резонансной для данного динамика. Для большего удобства и точности измерений можно использовать вольтметр переменного тока (стрелочный в данном случае удобнее цифрового), подключив его по схеме. На нижней резонансной частоте показания вольтметра (и колебания диффузора) будут максимальными.

Эмиль Руденко:

подать синус и менять частоту пока в резонанс не войдёт

Компенсатор_Х:

Последовательно с динамиком включить резистор 4 Ома и подавать на динамик частоту от 3 Гц до 30 кГц, наблюдая за падением на сопротивлении.

Анатолий Фролов:

по гугли—генератор на на таком то динамике

Вольный ветер:

Вытащить на воздух, положить на стол, и подключить к генератору свободных колебаний, который можно собрать из дух транзисторов, динамик в ящике или на доске с дыркой будет иметь резонанс отличный от отдельно стоящего….

Владимир Карпачёв:

Руководствуетесь «лишь мультиметром, способным измерять напряжение от от 0,1 Вольта». Замечательно! А какова погрешность вашего мультиметра в заданном диапазоне частот?…»…нужно добиться показателя 0,1 В при 500-1000 Герцах. Сигнал, видимо, слишком слабый и потому вольтметр показывает только нули». А ваш мультиметр вообще-то способен реагировать на напряжение данной частоты???

олег чернокнижников:

А зачем вам, собственно, измерять точно и самому рез. частоту динамика? Главное в АС это настроить саму АС

Нина Тютина:

Занятно, тоже не понимаю этого метода. резистор на 1кОм?!! Это все равно, что взвешивать цыпленка на автомобильных весах. Элементарная логика говорит, что для корректных измерений сопротивление динамика и сопротивление вспомогательного резистора должно быть одного порядка. Попробуйте вместо 1 килоома меньший номинал 5-50ом. т. к. ток одинаковый — то пользуем закон Ома Ur/Rr=Ud/Rd, r — резистор, d-динамик (мерим напряжение и на резисторе и на динамике). Сопротивление динамика находим из соотношения и строим кривую от частоты как в методе. А TQWP вещь неплохая — нет такого бубнежа как у фазоинвертора, скорее некоторый гул. Так что на любителя. Но мне нравится.

Дарья Каримова:

Ещё можете вот тут статью почитать s meanders /samodelnyj-lampovyj-usilitel-na-ecl86-em84.shtmlТам много чего по этому вопросу полезного .

Показатель Vas

Этот параметр для динамиков может измеряться по двум методикам:

  • добавочной массы;

  • добавочного объема.

В первом случае измерения делают с использованием каких-либо грузиков (10 грамм на каждый дюйм диаметра диффузора). Это могут быть, к примеру, гирьки от аптечных весов или старые монеты, номинал которых соответствует их весу. Такими предметами нагружают диффузор и измеряются его частоту. Далее производят необходимые расчеты по формулам.

При использовании метода добавочного объема звукоизлучатель герметично закрепляют в специальном измерительном ящике магнитом наружу. Далее измеряют резонансную частоту и вычисляют электрическую и механическую добротность динамика, а также полную. Затем с учетом полученных данных по формуле определяют Vas.

Вам будет интересно:Звездочет — это ученый, который изучает астрономию

Считается, что чем меньше Vas при прочих равных величинах, тем более компактное оформление можно использовать для динамика. Обычно небольшие значения этого параметра при той же резонансной частоте являются результатом сочетания тяжелой подвижной системы и жесткого подвеса.

Что за характеристика

Итак, добротность динамика — что это за показатель? Ориентируясь на эту характеристику, можно в первую очередь определить, как затухают колебательные движения звукоизлучателей. Считается, что слишком большим этот показатель у головок быть не должен.

Вам будет интересно:Дискурсивный анализ: понятие и роль в современной лингвистике

Если значение добротности у динамика высокое и равно, к примеру, 2 или 3, значит, колебания в нем будут продолжаться даже уже после того, как исчезнет вызвавшая их сила. Это, конечно же, приведет к снижению качества звука. В динамике начнут возникать раздражающие слух шумовые эффекты.

При низкой добротности (меньше 1) колебания в устройстве затухают очень быстро. То есть мембрана в динамике после резкого воздействия практически сразу приходит в стабильное состояние. В результате устройство выдает более чистый и приятный для слуха звук. Соответственно, о том, как повысить добротность динамика, специалисты задумываются редко. В основном при конструировании акустических систем мастера стараются сделать этот показатель более низким.

Как измерить добротность: формулы

В домашних условиях этот параметр динамиков часто рассчитывается с использованием простого милливольтметра переменного тока. Также для этой процедуры подготавливают плату и резистор 1000 Ом, стабилизирующий ток через динамик. Кроме того, при использовании такой методики понадобится программный генератор от компьютера и усилитель мощности (для подачи сигнала на динамик). Производят процедуру измерения добротности с применением такого оборудования следующим образом:

  • динамик подвешивают в свободном состоянии, к примеру, на какой-нибудь веревке;

  • собирают схему.

Перед сборкой схемы строят график, где по оси y откладывают напряжение в милливольтах (100, 200, 300). На х при этом указывают частоту (10, 20, 30…140 и т. д). Далее собирают схему, где сигнал с усилителя подается на резистор, а затем идет на динамик.

На следующем этапе:

  • включают милливольтметр в схему в точках а и с и устанавливают напряжение 10-20 В на частоте 500-1000 герц;

  • подключают вольтметр к точкам в и с, путем регулировки генератора находят частоту, где значения вольтах максимальны (Fs);

  • изменяют частоту вверх по отношению к Fs и находят точки, в которых показания вольтметра значительно меньше Fs и постоянны (Um).

Измеряя напряжение при определенной частоте динамика, строят соответствующий график. На следующем этапе находят среднее значение между минимальным напряжением и максимальным. При этом используют формулу U1/2=√Umax*Umin. Полученное значение в виде горизонтальной линии переносят на график и находят точки пересечения с линиями отношения F1 и F2 (с соответствующими показателями частоты).

Далее находят акустическую добротность по формуле Qa=√Umax/Umin * Fs/F2-F1, где Fs — значение частоты при максимальных показаниях милливольтметра. Затем можно найти электрическую добротность:

Qes=Qa*Umin/(Umax-Umin).

После этого вычисляют полную добротность динамика:

Qts=Qa*Qes/(Qa+Qes).

На следующем этапе строят график для второго динамика и производят такие же вычисления.

ПОЧЁМ ЗВЕНИТ КОЛОКОЛ

Что общего у колокола и громкоговорителя? Ну, то, что оба звучат, — это очевидно. Важнее, что и то и другое — колебательные системы. А в чём различие? Колокол, как по нему ни долби, будет звучать на единственной частоте, предписанной каноном. А внешне не так уж непохожий на него динамик — в широком диапазоне частот, и может, при желании, одновременно изобразить и звон колокола, и пыхтение звонаря. Так вот: два из трёх параметров Тиля — Смолла как раз и описывают количественно это различие.

Только надо твёрдо запомнить, а лучше — перечитать цитату из основоположника в историко-биографической справке. Там сказано: «на низких частотах». К тому, как поведёт себя динамик на частотах более высоких, Тиль, Смолл и их параметры никакого отношения не имеют и никакой ответственности за это не несут. Какие частоты для динамика низкие, а какие — нет? А об этом и говорит первый из тройки параметров.

От чего еще зависит

Оформление оказывает, таким образом, большое влияние на добротность динамика. Также этот показатель у такого оборудования зависит от:

  1. Мощности его мотора. Чем выше эта характеристика, тем ниже добротность у головки.

  2. Массы подвижки. При увеличении этого показателя усилия мотора в звукопередающем устройстве становятся менее заметными. Потери на трение при этом возрастают. В результате всего этого добротность устройства увеличивается.

  3. Диаметра проводов. В том случае, если провода в динамике дают большое сопротивление, электрическая добротность устройства увеличится. Ведь в данном случае нагрузка на динамик, представляющий собой подобие генератора, падает.

[hide][top]Измерения эквивалентного объема Vas

Есть несколько способов измерения эквивалентного объема, но в домашних условиях проще использовать два: метод «добавочной массы» и метод «добавочного объема». Первый из них требует из материалов несколько грузиков известного веса. Можно использовать набор грузиков от аптечных весов или воспользоваться старыми медными монетками 1,2,3 и 5 копеек, поскольку вес такой монетки в граммах соответствует номиналу. Второй метод требует наличия герметичного ящика заранее известного объема с соответствующим отверстием под динамик.

Определение эквивалентного объема методом добавочной массы

Для начала нужно равномерно нагрузить диффузор грузиками и вновь измерить его резонансную частоту, записав ее как F’s. Она должна быть ниже, чем Fs. Лучше если новая резонансная частота будет меньше на 30%-50%. Масса грузиков берется приблизительно 10 граммов на каждый дюйм диаметра диффузора. Т.е. для 12″ головки нужен груз массой около 120 граммов (1 дюйм равен 2,54 см). Я советую всё же использовать не монеты, ибо к примеру на 100грамм понадобится аж 20штук 5-копеечных монет! А это согласитесь не очень удобно. Я использую обычный пластилин необходимый вес которого я подгоняю при помощи аптечных весов.
Итак эквивалентный объем вычисляется по формуле:
где: Sd — эффективная излучающая поверхность диффузора, м2; Cms — относительная жесткость.
Излучающая поверхность диффузора для самых низких частот (в зоне поршневого действия) она совпадает с конструктивной и равна: Радиусом R в данном случае будет являться половина расстояния от середины ширины резинового подвеса одной стороны до середины резинового подвеса противоположной. Это связано с тем, что половина ширины резинового подвеса также является излучающей поверхностью

Обратите внимание что единица измерения этой площади — квадратные метры. Соответственно и радиус нужно в нее подставлять в метрах

Рассчитываем относительную жесткость Cms на основе полученных результатов по формуле:
м/Н (метров/Ньютон), где М — масса добавленных грузиков в килограммах.

Определение эквивалентного объема методом добавочного объема

Для определения эквивалентного объема динамика методом добавочного объема герметичный измерительный ящик с круглой дыркой совпадающей по размеру с диаметром диффузора динамика. Объем ящика лучше выбрать ближе к тому, в котором мы потом собираемся этот динамик слушать. Нужно герметично закрепить динамик в измерительном ящике. Лучше всего это сделать магнитом наружу, поскольку динамику все равно, с какой стороны у него объем, а вам будет проще подключать провода. Да и лишних отверстий при этом меньше. герметизируем все щели.
Затем нужно произвести измерения (резонансной частоты динамика в закрытом ящике) и, соответственно, вычислить механическую и электрическую добротность Qmc и Qec и добротность динамика в измерительном ящике Qts’ (Qtс). После чего уже вычисляем эквивалентный объем по формуле:
Практически с теми же результатами можно использовать и более простую формулу:
где: Vb — объем измерительного ящика, м3.
Выполняем проверку: вычисляем и если измеренная в ящике Qts’=Qtc, ну или почти равна, значит — все сделано правильно, и можно переходить к проектированию акустической системы.

Выводы

Итак, мы нашли и рассчитали несколько основных параметров и можем на их основании делать некоторые выводы:
*1. Если резонансная частота динамика выше 50Гц, то он имеет право претендовать на работу в лучшем случае как мидбас. О сабвуфере на таком динамике можно сразу забыть.
*2. Если резонансная частота динамика выше 100Гц, то это вообще не низкочастотник. Можете использовать его для воспроизведения средних частот в трехполосных системах.
*3. Если соотношение Fs/Qts у динамика составляет менее 50-ти, то этот динамик предназначен для работы исключительно в закрытых ящиках. Если больше 100 — исключительно для работы с фазоинвертором или в бандпассах. Если же значение находится в промежутке между 50 и 100, то тут нужно внимательно смотреть и на другие параметры — к какому типу акустического оформления динамик тяготеет.
Лучше всего для этого использовать специальные компьютерные программы, способные смоделировать в графическом виде акустическую отдачу такого динамика в разном акустическом оформлении. Правда при этом не обойтись без других, не менее важных параметров — Sd, Cms и .
Полученных в результате всех этих измерений данных достаточно для дальнейшего расчета акустического оформления низкочастотного звена достаточно высокого класса.

Какие еще параметры могут измеряться

Что это такое — добротность динамиков, мы выяснили. Определяют этот показатель обычно при выборе наиболее подходящее оформления, конструируя акустические системы. Однако для того, чтобы динамики в последующем передавали наиболее качественный звук, расчеты в данном случае должны производиться и по некоторым другим показателям.

При выборе акустического оформления всегда учитываются так называемые параметры Тиля-Смолла. Одной из таких характеристик является именно добротность, обозначаемая, как мы выяснили, Qts

Также при подборе акустического оформления принимаются во внимание такие показатели ТС как:

  • резонансная частота Fs;

  • упругость подвеса динамика Vas.

Помимо трех основных характеристик, при расчете оформления акустических систем специалисты могут использовать и такие параметры как:

  • площадь диффузора и его диаметр;

  • индуктивность;

  • чувствительность;

  • импеданс;

  • пиковая мощность;

  • масса подвижной системы;

  • двигательная мощность;

  • механическое сопротивление;

  • относительная жесткость и пр.

Считается, что большинство из этих характеристик может быть легко определено в домашних условиях с помощью не особенно сложных измерительных приборов.

Добротность динамика и оформление

Считается, что головки с показателем Fs/Qts>50 должны использоваться в закрытых корпусах, Fs/Qts>85 — с фазоинверторами, Fs/Qts>105 — с полосовыми резонаторами, Fs/Qts>30 — с экранами и открытыми ящиками.

Подбирать акустическое оформление для динамиков можно, как уже упоминалось, и просто по показателям их добротности. К примеру, головки с Qts> 1,2 чаще всего используются для открытых ящиков. Оптимальным показателем добротности для них считается 2,4. Динамики с Qts<0,8-1,0 предназначены для закрытых ящиков. В данном случае оптимальный показатель, как мы выяснили раньше, равен 0,5-0,6.

Добротность динамиков для фазоинвертора должна быть такой: Qts<0,6. Оптимум в данном случае будет равен 0,4. Устройства же с Qts<0.4 подходят для рупоров.

Как измерить добротность: формулы

В домашних условиях этот параметр динамиков часто рассчитывается с использованием простого милливольтметра переменного тока. Также для этой процедуры подготавливают плату и резистор 1000 Ом, стабилизирующий ток через динамик. Кроме того, при использовании такой методики понадобится программный генератор от компьютера и усилитель мощности (для подачи сигнала на динамик). Производят процедуру измерения добротности с применением такого оборудования следующим образом:

  • динамик подвешивают в свободном состоянии, к примеру, на какой-нибудь веревке;

  • собирают схему.

Перед сборкой схемы строят график, где по оси y откладывают напряжение в милливольтах (100, 200, 300). На х при этом указывают частоту (10, 20, 30…140 и т. д). Далее собирают схему, где сигнал с усилителя подается на резистор, а затем идет на динамик.

На следующем этапе:

  • включают милливольтметр в схему в точках а и с и устанавливают напряжение 10-20 В на частоте 500-1000 герц;

  • подключают вольтметр к точкам в и с, путем регулировки генератора находят частоту, где значения вольтах максимальны (Fs);

  • изменяют частоту вверх по отношению к Fs и находят точки, в которых показания вольтметра значительно меньше Fs и постоянны (Um).

Измеряя напряжение при определенной частоте динамика, строят соответствующий график. На следующем этапе находят среднее значение между минимальным напряжением и максимальным. При этом используют формулу U1/2=√Umax*Umin. Полученное значение в виде горизонтальной линии переносят на график и находят точки пересечения с линиями отношения F1 и F2 (с соответствующими показателями частоты).

Далее находят акустическую добротность по формуле Qa=√Umax/Umin * Fs/F2-F1, где Fs — значение частоты при максимальных показаниях милливольтметра. Затем можно найти электрическую добротность:

Qes=Qa*Umin/(Umax-Umin).

После этого вычисляют полную добротность динамика:

Qts=Qa*Qes/(Qa+Qes).

На следующем этапе строят график для второго динамика и производят такие же вычисления.

Что за характеристика

Итак, добротность динамика — что это за показатель? Ориентируясь на эту характеристику, можно в первую очередь определить, как затухают колебательные движения звукоизлучателей. Считается, что слишком большим этот показатель у головок быть не должен.

Если значение добротности у динамика высокое и равно, к примеру, 2 или 3, значит, колебания в нем будут продолжаться даже уже после того, как исчезнет вызвавшая их сила. Это, конечно же, приведет к снижению качества звука. В динамике начнут возникать раздражающие слух шумовые эффекты.

Вам будет интересно:Дискурсивный анализ: понятие и роль в современной лингвистике

При низкой добротности (меньше 1) колебания в устройстве затухают очень быстро. То есть мембрана в динамике после резкого воздействия практически сразу приходит в стабильное состояние. В результате устройство выдает более чистый и приятный для слуха звук. Соответственно, о том, как повысить добротность динамика, специалисты задумываются редко. В основном при конструировании акустических систем мастера стараются сделать этот показатель более низким.

Теория и практика

Вам будет интересно:Звездочет — это ученый, который изучает астрономию

На что влияет добротность динамика, таким образом, понятно. Как мы выяснили, при использовании акустического оформления этот показатель должен быть достаточно низким. Именно таким образом дело обстоит в теории. Однако на практике низкодобротные динамики встречаются, к сожалению, довольно-таки редко. Даже, к примеру, при использовании фазоинвертора, требующего, как мы выяснили, показателя в 0,5-0,6, часто применяются головки с показателем выше единицы.

У любого звукоизлучающего устройства имеется своя собственная резонансная частота. И именно через нее мембраны после резких сигналов приходят в равновесное состояние. Во многих случаях при высокой добротности динамик будет даже не продлевать или доигрывать какие-либо ноты. При прекращении внешнего воздействия он просто-напросто начнет неприятно гудеть. Именно таким образом ведут себя на определенной частоте, к примеру, дешевые компьютерные колонки.

При всем при этом дорогие динамики с большой добротностью выдают чаще всего достаточно качественный звук. Дело здесь заключается прежде всего в том, что такие устройства обычно имеют еще и довольно-таки низкую резонансную частоту. При таком условии шумы воспринимаются не особенно хорошо натренированным в плане акустики человеческим ухом не как досадные «помехи», а просто, как очень мощный звук. В особенности незаметной подобная «грязь» становится при прослушивании простой музыки, к примеру, современной попсы. То есть гул в данном случае проходит по «правильной» частоте.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector