Аналоговый компьютер

Свойства

Свойства аналоговых сигналов в значительной мере являются противоположностью свойств квантованных или цифровых сигналов.

Отсутствие чётко отличимых друг от друга дискретных уровней сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте «количество информации» будет ограничено лишь динамическим диапазоном средства измерения.

Отсутствие избыточности. Из непрерывности пространства значений следует, что любая помеха, внесенная в сигнал, неотличима от самого сигнала и, следовательно, исходная амплитуда не может быть восстановлена. В действительности фильтрация возможна, например, частотными методами, если известна какая-либо дополнительная информация о свойствах этого сигнала (в частности, полоса частот).

Сигнал, создаваемый по образу и подобию

С аналоговыми сигналами мы сталкиваемся постоянно и наиболее эффектно их можно продемонстрировать с помощью виниловой музыкальной пластинки. На ней звук записан в виде извилистой борозды.

Идущая по ней игла проигрывателя повторяет контур и передает свои движения на устройство, издающее звук. Раньше, в граммофоне для этого использовался раструб, усиливавший амплитуду колебаний и превращавший их в звук.

Можно сказать, что на пластинке был записан именно аналоговый сигнал в чистом виде. И это подводит нас к мысли о том, что он представляет собой информацию о волновом процессе, параметрами которого являются амплитуда (громкость) и частота (тональность звука).

Здесь я хочу сделать научное отступление.

Образованные люди знают, что звук и свет, тепло и УФ излучение и радиосигналы – это все волны определенной частоты. Создавая подобные колебания, мы получаем их аналог (или аналоговый сигнал).

Продолжим рассматривать нашу виниловую пластинку. Мы знаем что граммофон – это позапрошлый век, и со временем он превратился в электроаппаратуру. Что добавилось?

Возле иглы поставили пьезокристалл, который под действием механических колебаний выдавал электрический ток, который уже можно передавать. Его напряжение изменялось такой же частотой и амплитудой, как и звуковой дорожке пластинки. Ток кристалла был ну очень маленький и требовал усиления.

Такое напряжение уже способно смещать сердечник в электромагнитной катушке динамика, заставляя его мембрану колебаться… Правильно, с такой же частотой и амплитудой.

Выходит, сигнал называется аналоговым, потому что он точно повторяет параметры, которые следует передать. И с ним мы сталкиваемся повсеместно:

  • вы сейчас читаете тест. В нем есть буквы-сигналы, аналогичные определенным звукам. А слова, которые вы мысленно произносите при этом – аналоги предметов или действий;
  • любая картина, рисунок или фотография – аналог того, что мы видим;
  • звук, которые превращается в радиоволны FM приемника так же аналоговый сигнал.

Применение

Индикатор кулачкового аналогового компьютера

Аналоговые электронные компьютеры основываются на задании физических характеристик их составляющих. Обычно это делается методом включения-исключения некоторых элементов из цепей, которые соединяют эти элементы проводами, и изменением параметров переменных сопротивлений, ёмкостей и индуктивностей в цепях.

Автомобильная автоматическая трансмиссия является примером гидромеханического аналогового компьютера, в котором при изменении вращающего момента жидкость в гидроприводе меняет давление, что позволяет получить необходимый конечный коэффициент передачи.

До появления мощной и надёжной цифровой аппаратуры аналоговые вычислители широко применялись в авиационной и ракетной технике, для оперативной обработки различной информации и последующего формирования сигналов управления в автопилотах и различных более сложных системах автоматического управления полётом, или другими специализированными процессами.

Помимо технических применений (автоматические трансмиссии, музыкальные синтезаторы), аналоговые компьютеры используются для решения специфических вычислительных задач практического характера. Например, кулачковый механический аналоговый компьютер, изображённый на фото, применялся в паровозостроении для аппроксимации кривых 4 порядка с помощью преобразований Фурье.

Механические компьютеры использовались в первых космических полётах и выводили информацию с помощью смещения индикатора поверхностей. С первого пилотируемого космического полета до 2002 года, каждый пилотируемый советский и российский космический корабль из серий Восток, Восход и Союз был оснащен компьютером «Глобус»[источник не указан 1353 дня], показывающим движение Земли через смещение миниатюрной копии земного шара и данные о широте и долготе.

Военная техника

В военной технике исторически выработалось ещё одно название аналоговых вычислительных устройств для управления огнём артиллерии, высотного бомбометания и других военных задач, требующих сложных вычислений — это счётно-решающий прибор. Примером может служить прибор управления зенитным огнём.

Аналоговая техника интересна для военных двумя чертами: она крайне быстра, и в условиях помех работоспособность машины восстановится, как только помеха пропадёт.

Аналоговый сигнал

Для начала вспомним, что сигнальные данные – это коды, использующиеся для обмена какими-либо сообщениями в информационных или управленческих сферах деятельности. В электронике аналоговый тип кода используется при передаче электричества: при этом определённым величинам амплитуды и частоты звука, яркости цвета и света соответствуют определённые значения напряжения. Из-за этих соответствий данный тип передачи данных и прозвали аналоговым.

В мире физики передачу данных при помощи сигнала можно отразить графически. В данном случае график будет представлять собой постоянно «скачущую» то вверх, то вниз кривую, не имеющую прямых углов. Похожие графики большинство из нас часто рисовало в школе на уроках физики и математики.

Возможно, вам также будет интересно

Проблема выбора между программируемым логическим контроллером (ПЛК) и промышленным компьютером (PC) – одна из наиболее часто возникающих в наше время при модернизации существующих или внедрении новых систем управления в промышленности. Эти технологии обладают различными пользовательскими свойствами: принцип действия/обслуживания, устойчивость к промышленным условиям, легкость выполнения сервисн…

В статье рассмотрены строение и основные принципы работы силовых автоматических выключателей ВА-45 серии EKF PROxima, их назначение, функционал и сферы применения. Материал адресован прежде всего специалистам электротехнической отрасли — профессиональным электрикам и специалистам по электроснабжению компаний.

Пространства

Различают два пространства сигналов — пространство L (непрерывные сигналы), и пространство l (L малое) — пространство последовательностей.

Пространство l (L малое) есть пространство коэффициентов Фурье (счётного набора чисел, определяющих непрерывную функцию на конечном интервале области определения), пространство L — есть пространство непрерывных по области определения (аналоговых) сигналов.

При некоторых условиях, пространство L однозначно отображается в пространство l (например, первые две теоремы дискретизации Котельникова).

Аналоговые сигналы описываются непрерывными функциями времени, поэтому аналоговый сигнал иногда называют континуальным сигналом. Аналоговым сигналам противопоставляются дискретные (квантованные, цифровые). Примеры непрерывных пространств и соответствующих физических величин:

  • прямая: электрическое напряжение
  • окружность: положение ротора, колеса, шестерни, стрелки аналоговых часов, или фаза несущего сигнала
  • отрезок: положение поршня, рычага управления, жидкостного термометра или электрический сигнал, ограниченный по амплитуде
  • различные многомерные пространства: цвет, квадратурно-модулированный сигнал.

Бесконечная информация

Легкомысленное рассуждение на уровне студента первого курса.
Возможно, его (и его вполне вероятные источники) следует привести, но без претензии на математическую строгость.

Из «непрерывности» пространства ни черта не следует.
Например, множества рациональных или алгебраических чисел являются вполне себе непрерывными в топологическом плане (с их классической топологией); их топология обладает всеми правильными свойствами. Не хватает только метрической полноты.
А мощность их счётна, что в информационном плане означает, что каждая точка пространства может быть описана конечным объёмом информации, хотя для разных точек своим и в целом сверху не ограниченным.
Проверка же свойства полноты требует предельного перехода, следовательно об экспериментальных данных в пользу метрической полноты пространств каких-либо физических величин лучше и не заикаться.
А именно полнота и является главным аргументом в поддержку применимости мощности континуума к анализу.

Что же касается обоснования количества информации из априорных соображений, то таковые в сторону бесконечности количества информации во Вселенной мне неизвестны, хотя вне всякого сомнения количество информации чудовищно велико и превосходит все мыслимые вычислительные возможности.

Вообще, тут затронут весьма серьёзный и уходящий в философию вопрос, который IMHO лучше вот так, мимоходом, не задевать.
Incnis Mrsi 17:12, 12 апреля 2008 (UTC)

а вообще, надо разделить статью по тематикам, а то всё в кучу смешали 🙁 мне кажется в философии вообще нет термина «Аналоговый сигнал», а в электронике (строго по-физике говоря) напряжение — дискретно, ибо заряд — дискретен, уровни энергий электронов в металле не смотря на скученность — тоже дискретны..//Berserkerus18:08, 12 апреля 2008 (UTC)

Ну загрузил… Мы, физики, люди простые. Однако: в классическом приближении не накладывается никаких ограничений на значения аналоговой величины в интервале значений, которые она может принимать. Поэтому для значения X внутри интервала допустимых значений и для любого ε>0 существует значение Y: X<Y<X+ε (еще края диапазона надо учесть, но это дела не меняет). След-но, между любыми двумя значениями существует третье, отличное от них. След-но, для точного описания значения нужно бесконечное множество десятичных знаков.
Ладно, что делать-то? Без математиков тут не обойтись. Надо показать пусть не бесконечное, но большое количество информации, в отличие от цифровых сигналов. Думаю, надо указать в определении не непрерывное множество, а множество действительных чисел.—Кae 18:37, 12 апреля 2008 (UTC)
Какая же тут философия? Ни одного слова. Заряд дискретен, но напряжение — нет (т.к. U=q/C, а C не дискретно). Если глубже лезть, то все дискретно в квантовом приближении. Но так далеко никто не лезет — нет необходимости. Сигнал понятие абстрактное, настолько, чтобы легко применять простую математику. — Эта реплика добавлена участником Кae (о · в)

По мне — так писать в статью о «бесконечности информации» вообще «нет необходимости»

зачем так акцентировать внимание на этом, вынося в название секции жирными буквами?//Berserkerus18:58, 12 апреля 2008 (UTC). По поводу «множества действительных чисел» писали выше я и Berserkerus

Уважаемый Kae, Вы дискуссию ведёте или монолог? Давайте напишем по-другому:

По поводу «множества действительных чисел» писали выше я и Berserkerus. Уважаемый Kae, Вы дискуссию ведёте или монолог? Давайте напишем по-другому:

Отсутствие чётко отличимых друг от друга дискретных состояний сигнала приводит к невозможности применить для его описания понятие информации в том виде, как она понимается в цифровых технологиях. Содержащееся в одном отсчёте «количество информации» будет ограничено лишь точностью (измерений?), т.е. динамическим диапазоном (чего именно? АЦП? тут надо подумать над более общей формулировкой…).

Раздел про бесконечность вообще выбросим (поскольку с точки зрения современной теории информации, где всякие ε-сети рассматривают, написанное вообще является сомнительным применением понятий), и оставим один раздел /* Свойства */, в котором соображения про наличие кучи «мелкой» информации и шум будут объединены (да они логически и связаны, как причина и следствие). Incnis Mrsi 19:12, 12 апреля 2008 (UTC)

Представители

См. также: Список советских компьютерных систем

Польский электронный аналоговый компьютер «AKAT-1»

Среди аналоговых вычислительных устройств можно выделить:

  • FERMIAC
  • ZAM

«Итератор»

«Итера́тор» — специализированная АВМ, предназначенная для решения линейных краевых задач систем линейных дифференциальных уравнений. Разработана в Институте кибернетики АН УССР в 1962 году.

«Итератор» решает краевую задачу итерационным способом Ньютона, сводящим её к решению нескольких дифференциальных уравнений с заданными начальными условиями. Этот алгоритм заключается в определении матрицы первых производных по компонентам вектора начальных условий и автоматического поиска решения краевой задачи с использованием этой матрицы. Благодаря примененному методу, сходимость итерационного процесса с заданной допустимой ошибкой решения обеспечивается за три-четыре итерации.

Кроме систем дифференциальных уравнений с постоянными и переменными коэффициентами 2n-го порядка с линейными краевыми условиями, «Итератор» решает системы линейных алгебраических уравнений n-го порядка с произвольной матрицей коэффициентов.

Характеристики

  • максимальный порядок решаемой системы дифференциальных уравнений — 8;
  • максимальное число точек в интервале интегрирования, входящих в краевые условия — 3;
  • максимальная погрешность — до 3 %;
  • число операционных усилителей — 21;
  • потребляемая мощность — 1кВ·A.

«МН»

Семейство аналоговых вычислительных машин. Название является аббревиатурой слов «модель нелинейная». Были предназначены для решения задач Коши для обыкновенных дифференциальных уравнений. Наиболее совершенным представителем машин этого ряда была машина «МН-18» — АВМ средней мощности, предназначенная для решения методами математического моделирования сложных динамических систем, описываемых дифференциальными уравнениями до десятого порядка в составе аналого-цифрового вычислительного комплекса или самостоятельно. Схема управления позволяет производить одновременно и разделенный запуск интеграторов по группам, однократное решение задач и решение задач с повторением. Допустимо объединение до четырёх машин МН-18 в единый комплекс.

Основные технические характеристики

  • количество операционных усилителей — 50;
  • максимальный порядок решаемых уравнений — 10;
  • диапазон изменения применяемых величин ± 50 В;
  • время интегрирования — 1000 с;
  • потребляемая мощность — 0,5 кВ × А.

Выбор компонентов

Подробная схема модуля с указанием выбранных компонентов показана на рисунке 3.

Рис. 3. Подробная схема комбинированного аналогового выхода

ЦАП DAC8760

В состав DAC8760 входят ЦАП, операционные усилители A1, A2 и A3, стабилизаторы напряжения VREG и VREF, а также ключи, транзисторы и резисторы, необходимые для создания настраиваемого драйвера токовых и выходов по напряжению для промышленного применения. Полная нескорректированная погрешность DAC8760 не превосходит 0,1% диапазона регулирования и включает в себя погрешность смещения, погрешность усиления и погрешность интегральной нелинейности при 25°С. Полная погрешность не более 0,1% диапазона регулирования справедлива для различных типов выходных каскадов по току и по напряжению, и закладывает отличную основу для создания прецизионных аналоговых схем. Наибольшая дифференциальная нелинейность ±1 наименьший значимый бит обеспечивает абсолютно монотонную работу выходов по току, и напряжению.

Интегральная нелинейность ЦАП вносит погрешность всего 0,022% от максимального значения из диапазона регулирования для выходного напряжения VOUT и 0,024% для выходного тока IOUT. Встроенный источник обеспечивает для ЦАП точное опорное напряжение VREF с температурным дрейфом не более 10 мкВ/°С. Четырехпроводной коммуникационный SPI-порт позволяет управлять одновременно несколькими устройствами DAC8760, используя четырехканальный цифровой изолятор для создания модулей с несколькими аналоговыми выходами.

Операционный усилитель: OPA192

Буферный усилитель входит в схему обратной связи цепи выходного напряжения DAC8760. Любые погрешности по постоянному току этого усилителя сказываются на точности выходного напряжения всей схемы. Небольшое напряжение смещения, небольшой температурный дрифт этого напряжения, высокие коэффициенты подавления нестабильности питания и подавления синфазного сигнала способствуют тому, что итоговая погрешность, вносимая усилителем, будет как можно меньше. Для уменьшения влияния операционного усилителя на качество выходного токового сигнала IOUT применяют компоненты с небольшим входным током смещения, такие как операционные усилители на основе полевых транзисторов с управляющим p-n-переходом, полевых КМОП-транзисторов или биполярных транзисторов.

OPA192 – это прецизионный операционный усилитель на КМОП-транзисторах, напряжение смещения которого в большинстве случаев составляет всего 5 мкВ и не превосходит 25 мкВ. Температурный дрифт напряжения смещения OPA192 обычно равен около 0,2 мкВ/°C, но не превышает 0,5 мкВ/°C. Коэффициент подавления синфазного сигнала составляет 110 дБ, а коэффициент подавления нестабильного питания – 0,5 мкВ/В на всем диапазоне напряжений +4…+36 В. КМОП-транзисторы операционного усилителя вносят в схему токовую погрешность не более чем 20 пА. Ширина полосы пропускания усилителя составляет 10 МГц, скорость нарастания сигнала – 20 В/мкс, а время установления сигнала при его изменении на 0,01% не превышает 1 мкс. Один из выходов типа rail-to-rail может быть подключен к земле при работе в схеме с однополярным источником питания. 

Цифровой изолятор ISO7641

DAC8760 имеет четыре входа для организации двунаправленной связи: SCLK, DIN, SDO и LATCH. Эти выходы должны бить изолированы от входов головного процессора с помощью цифрового изолятора. ISO7641 обеспечивает гальваническую развязку более 4 кВ и позволяет выполнять обмен данными на скорости до 25 МБ/с. 

Пассивные компоненты

На печатной плате устройства предусмотрено место для установки внешнего резистора RSET. Если это место остается пустым – то не остается других пассивных компонентов, которые могут внести погрешность в работу схемы. Если же внешний резистор RSET используется, то он должен обладать высокой точностью и малым температурным коэффициентом.

В случае, когда аналоговый выход работает с большой емкостной нагрузкой, может потребоваться использование дополнительного компенсирующего конденсатора. Емкость этого компенсатора выбирается в соответствии с рекомендациями заводской документации на ЦАП DACx760. Все конденсаторы, используемые в схеме, должны быть рассчитаны на напряжение значительно большее, чем то, под которым они будут находиться в процессе работы, для того чтобы поддерживать их емкость на постоянном уровне во время прохождения сигнала. Рекомендуется использовать изолирующие конденсаторы типа C0G/NP0 (предпочтительно) или X7R. 

Представители

Польский электронный аналоговый компьютер «AKAT-1»

Среди аналоговых вычислительных устройств можно выделить:

  • FERMIAC
  • ZAM

«Итератор»

«Итера́тор» — специализированная АВМ, предназначенная для решения линейных краевых задач систем линейных дифференциальных уравнений. Разработана в Институте кибернетики АН УССР в 1962 году.

«Итератор» решает краевую задачу итерационным способом Ньютона, сводящим её к решению нескольких дифференциальных уравнений с заданными начальными условиями. Этот алгоритм заключается в определении матрицы первых производных по компонентам вектора начальных условий и автоматического поиска решения краевой задачи с использованием этой матрицы. Благодаря примененному методу, сходимость итерационного процесса с заданной допустимой ошибкой решения обеспечивается за три-четыре итерации.

Кроме систем дифференциальных уравнений с постоянными и переменными коэффициентами 2n-го порядка с линейными краевыми условиями, «Итератор» решает системы линейных алгебраических уравнений n-го порядка с произвольной матрицей коэффициентов.

Характеристики

  • максимальный порядок решаемой системы дифференциальных уравнений — 8;
  • максимальное число точек в интервале интегрирования, входящих в краевые условия — 3;
  • максимальная погрешность — до 3 %;
  • число операционных усилителей — 21;
  • потребляемая мощность — 1кВ·A.

«МН»

Семейство аналоговых вычислительных машин. Название является аббревиатурой слов «модель нелинейная». Были предназначены для решения задач Коши для обыкновенных дифференциальных уравнений. Наиболее совершенным представителем машин этого ряда была машина «МН-18» — АВМ средней мощности, предназначенная для решения методами математического моделирования сложных динамических систем, описываемых дифференциальными уравнениями до десятого порядка в составе аналого-цифрового вычислительного комплекса или самостоятельно. Схема управления позволяет производить одновременно и разделенный запуск интеграторов по группам, однократное решение задач и решение задач с повторением. Допустимо объединение до четырёх машин МН-18 в единый комплекс.

Основные технические характеристики

  • количество операционных усилителей — 50;
  • максимальный порядок решаемых уравнений — 10;
  • диапазон изменения применяемых величин ± 50 В;
  • время интегрирования — 1000 с;
  • потребляемая мощность — 0,5 кВ × А.

В чём отличие типов сигнала

Ключевая разница между двумя этими кодами заключается в том, что аналоговый сигнал никогда не прерывается по времени, в отличие от дискретного. Из этого различия вытекают и большинство преимуществ и недостатков одного кода перед другим. К примеру, дискретный тип:

  • помехоустойчив и имеет небольшое количество значений;
  • довольно просто и быстро расшифровывается принимающим оборудованием;
  • пригоден к кодировке больших объёмов данных для их хранения либо передачи на большие расстояния.

При всех этих преимуществах у него есть один серьёзный недостаток: достаточной большой уровень помех в системе может спровоцировать обрыв, при котором первоначальный вид потока данных восстановить без специальных устройств уже не удастся.

Если же говорить об аналоговом сигнале, то к его преимуществам относят простоту формирования и небольшую стоимость оборудования, которое с ним работает. Минусов у данного типа сигнала гораздо больше: он содержит большое количество лишней информации, которая фильтруется при приёме, обладает слабой помехоустойчивостью и часто поступает с искажениями (что особенно плохо в случае с передачей видеосигнала), а также его легко перехватить и расшифровать любым доступным устройством.

Если не вдаваться в особенности и нюансы, то можно заключить, что разница между аналоговым и цифровым сигналом заключается в их прерывности/непрерывности, разном графическом воплощении и в различающихся свойствах переданной информации.

Применение

Индикатор кулачкового аналогового компьютера

Аналоговые электронные компьютеры основываются на задании физических характеристик их составляющих. Обычно это делается методом включения-исключения некоторых элементов из цепей, которые соединяют эти элементы проводами, и изменением параметров переменных сопротивлений, ёмкостей и индуктивностей в цепях.

Автомобильная автоматическая трансмиссия является примером гидромеханического аналогового компьютера, в котором при изменении вращающего момента жидкость в гидроприводе меняет давление, что позволяет получить необходимый конечный коэффициент передачи.

До появления мощной и надёжной цифровой аппаратуры аналоговые вычислители широко применялись в авиационной и ракетной технике, для оперативной обработки различной информации и последующего формирования сигналов управления в автопилотах и различных более сложных системах автоматического управления полётом, или другими специализированными процессами.

Помимо технических применений (автоматические трансмиссии, музыкальные синтезаторы), аналоговые компьютеры используются для решения специфических вычислительных задач практического характера. Например, кулачковый механический аналоговый компьютер, изображённый на фото, применялся в паровозостроении для аппроксимации кривых 4 порядка с помощью преобразований Фурье.

Механические компьютеры использовались в первых космических полётах и выводили информацию с помощью смещения индикатора поверхностей. С первого пилотируемого космического полета до 2002 года, каждый пилотируемый советский и российский космический корабль из серий Восток, Восход и Союз был оснащен компьютером «Глобус»[источник не указан 1353 дня], показывающим движение Земли через смещение миниатюрной копии земного шара и данные о широте и долготе.

Военная техника

В военной технике исторически выработалось ещё одно название аналоговых вычислительных устройств для управления огнём артиллерии, высотного бомбометания и других военных задач, требующих сложных вычислений — это счётно-решающий прибор. Примером может служить прибор управления зенитным огнём.

Аналоговая техника интересна для военных двумя чертами: она крайне быстра, и в условиях помех работоспособность машины восстановится, как только помеха пропадёт.

Применение

Индикатор кулачкового аналогового компьютера

Аналоговые электронные компьютеры основываются на задании физических характеристик их составляющих. Обычно это делается методом включения-исключения некоторых элементов из цепей, которые соединяют эти элементы проводами, и изменением параметров переменных сопротивлений, ёмкостей и индуктивностей в цепях.

Автомобильная автоматическая трансмиссия является примером гидромеханического аналогового компьютера, в котором при изменении вращающего момента жидкость в гидроприводе меняет давление, что позволяет получить необходимый конечный коэффициент передачи.

До появления мощной и надёжной цифровой аппаратуры аналоговые вычислители широко применялись в авиационной и ракетной технике, для оперативной обработки различной информации и последующего формирования сигналов управления в автопилотах и различных более сложных системах автоматического управления полётом, или другими специализированными процессами.

Помимо технических применений (автоматические трансмиссии, музыкальные синтезаторы), аналоговые компьютеры используются для решения специфических вычислительных задач практического характера. Например, кулачковый механический аналоговый компьютер, изображённый на фото, применялся в паровозостроении для аппроксимации кривых 4 порядка с помощью преобразований Фурье.

Механические компьютеры использовались в первых космических полётах и выводили информацию с помощью смещения индикатора поверхностей. С первого пилотируемого космического полета до 2002 года, каждый пилотируемый советский и российский космический корабль из серий Восток, Восход и Союз был оснащен компьютером «Глобус»[источник не указан 1351 день], показывающим движение Земли через смещение миниатюрной копии земного шара и данные о широте и долготе.

Военная техника

В военной технике исторически выработалось ещё одно название аналоговых вычислительных устройств для управления огнём артиллерии, высотного бомбометания и других военных задач, требующих сложных вычислений — это счётно-решающий прибор. Примером может служить прибор управления зенитным огнём.

Аналоговая техника интересна для военных двумя чертами: она крайне быстра, и в условиях помех работоспособность машины восстановится, как только помеха пропадёт.

Весь мир в двух цифрах

Теперь настало время разобраться с цифровым сигналом. И здесь сразу стоит оговорить, о каких цифрах идет речь. Всего о двух:

  • 0, или «ноль» это отсутствие сигнала (напряжения, если мы говорим о передаче по проводам);
  • 1, или «единица», сигнал подается (напряжение в сети есть, причем не имеет значения какое оно);

Поэтому, рассматривая цифровой сигнал на экране осциллографа, мы видим не плавно изменяющуюся линию, а периодически возникающие прямоугольные «зубцы», верхняя линия которых соответствует значению подаваемого напряжения.

Это и есть «единица», или сигнал. А в промежутке между ними линия находится на нуле, напряжения нет. Такой вид называется дискретным, состоящим из отдельных элементов.

Самым простым примером цифрового сигнала является азбука Морзе. Закодированные с помощью нее сообщения можно передавать по кабелю, звуком, светом или записав на ленте телеграфа.

Но у нас сейчас век цифровых технологий и даже ребенок знает, что с помощью нулей и единиц можно записать любую информацию, используя двоичный код. А как это можно сделать, знают лишь специалисты. Здесь используется сложная система кодов, описывающая, как нужно читать последовательность импульсов, и какая информация в них описана.

Например, когда речь идет о музыке, аналоговая синусоида колебаний звука разбивается на отдельные временные участки и для каждого из них определяется значение напряжения на данный момент. Чем меньше такие промежутки (частота дискретизации), тем более точно можно описать исходную синусоиду, но она уже получится в виде множества ступенечек.

Оцифровка звука используется повсеместно (в компьютерах, в мобильной связи) поэтому для облегчения данной задачи существует два типа устройств:

  • аналогово-цифровой преобразователь (АЦП);
  • цифро-аналоговый преобразователь (ЦАП).

Пример со звуком наиболее ярко показывает, как можно превратить аналоговый сигнал в цифровой и наоборот. Но в реальности цифровой сигнал имеет гораздо больше возможностей. Ведь цифрой можно описать и изображение, задав для каждого отдельного пикселя значения насыщенности RGB составляющих. Или передать детальную информацию о параметрах работы устройства.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector