Что такое электронная нагрузка: общая информация, для чего они используются и какие бывают

Камрад, рассмотри датагорские рекомендации

Внимание! 800 рублей для новичков на Aliexpress Регистрируйтесь по нашей ссылке. Если вы впервые на Aliexpress — получите 800.00₽ купонами на свой первый заказ.. Цифровой осциллограф DSO138

Кит для сборки

Цифровой осциллограф DSO138. Кит для сборки

Функциональный генератор. Кит для сборки

Настраиваемый держатель для удобной пайки печатных плат

Сергей (metrolog)
г. Нижнекамск, РТ
Список всех статей

Профиль metrolog

Исследователь по натуре. Люблю повозиться с железками, собрать что-нибудь новое.Сюда пришел пообщаться с грамотными людьми, узнать больше о микроконтроллерах, акустике и ламповых усилителях.

Разработка схемы

Принцип работы электронной нагрузки очень простой. Он основан на равенстве напряжения на инвертирующем и неинвертирующем входе операционного усилителя. Мы устанавливаем значение напряжения, прилагаемого к неинвертирующему входу с помощью многооборотного переменного резистора VR1. Напряжение регулируется в диапазоне 0-0.5В. Источником питания делителя напряжения служит точное напряжение 2.5В, генерируемое ИС источника опорного напряжения AD780. Значение напряжения на инвертирующем входе можно также измерить на неинвертирующем входе операционного усилителя LM324. Поэтому напряжение на резисторе R5 напрямую зависит от напряжения, которое мы установили. Установленное напряжение на резисторе R5 определяет настройку тока, который проходит через него. Этот ток также является током, который потребляется от источника питания во время тестирования. Выходное значение напряжения операционного усилителя LM324 появляется при использовании принципа равенства напряжений на входах. Следовательно оно управляет затвором Q1 MOSFET транзистора в линейной области. Сопротивление сток-исток (Rds) зависит от напряжения затвора. Выход операционного усилителя устанавливает значение Rds на требуемый уровень, который ограничивает ток по данной цепи. Именно MOSFET транзистор работает как резистивный элемент, который ограничивает ток с помощью операционного усилителя.

Поскольку MOSFET транзистор работает как резистивный элемент, он рассеивает тепло в зависимости от протекаемого через него тока. Простое равенство P = VI определяет количество тепла, которое будет генерироваться на MOSFET транзисторе. Для расширения диапазона мощности нагрузки нам необходимо прикрепить радиатор к корпусу MOSFET транзистора.

Используемый радиатор рассчитан на тепловое сопротивление 2.5 °C/Вт. Тепловое сопротивление р-n-перехода с корпусом MOSFET транзистора составляет 0.75 °C/Вт. Также тепловое сопротивление в месте соприкосновения корпуса с радиатором составляет 1.75 °C/Вт. Общее тепловое сопротивление составляет 5 °C/Вт. Мы можем предположить, что будем использовать нагрузку при комнатной температуре, а именно 25°C. Кристалл IRF3710 MOSFET транзистора рассчитан на температуру до 175 °C, поэтому мы в идеальном случае можем нагревать кристалл MOSFET транзистора до этой температуры. Разница температуры составит почти 175°C-25°C = 150°C. Используя данное значение, мы можем вычислить максимальную мощность, которая будет рассеиваться на электрической нагрузке. P = 150 / 5 = 30Вт.

MOSFET транзистор IRF3710 имеет максимальное напряжение сток-исток (Vds) величиной 100В. Поэтому не рекомендуется подключать источник питания напряжением более 100В.

Мощность 30Вт, ток 5A и напряжение 100В являются предельными параметрами для данной нагрузки. Следовательно, для подключения источника питания к нагрузке вам необходимо правильно рассчитать мощность рассеивания. Например, если вы подключаете к нагрузке источник питания напряжением 30В, тогда вы не должны превышать ток 1A в непрерывном режиме. В противном случае MOSFET транзистор может выйти из строя, поскольку будет превышена предельная температура кристалла MOSFET транзистора 175 °C.

Другой параметр, который нужно принять во внимание при работе с MOSFET транзисторами – это области устойчивой работы (SOA) MOSFET транзистора. Поскольку текущий ток не превышает 5A и мощность не превысит 30Вт, тогда MOSFET транзистор будет оставаться в области устойчивой работы

Превышение мощности 30W приведет к перегоранию MOSFET транзистора при больших напряжениях.

Последовательно с нагрузкой включается амперметр. Он показывает текущее значение тока, потребляемое от источника питания. Амперметр запитывается от стабилизатора напряжения 78L15, также как операционный усилитель и ИС источника опорного напряжения. Амперметр непрерывно измеряет ток и позволяет пользователю контролировать его в режиме реального времени.

Характеристики новой версии

  • Дисплей на органических светодиодах OLED
  • Напряжение питания: 12 В постоянного тока ± 5%
  • Режим нагрузки: постоянный ток нагрузки
  • Напряжение нагрузки: 0,5-60 вольт
  • Диапазон регулирования тока разряда постоянного тока: 0-10 A
  • Напряжение в диапазоне: 3,3 — 60 вольт, Точность: 0,01 В
  • Максимальный диапазон емкости: 99999 мА/ч

К сожалению, они не указывают, какая там версия печатной платы. Для коррекции нажмите кнопку энкодера, главный интерфейс и интерфейс настроек будут переключены.

В интерфейсе настроек отрегулируйте поворотную кнопку, изменяя соответствующие параметры в настройках. Регулировка по часовой стрелке для увеличения значения, против часовой стрелки должна уменьшить значение. Данные будут сохранены автоматически после завершения настройки. Установятся значения без изменений после перезапуска питания.

В любом случае очень доволен этой покупкой, уже десятки раз использовал электронную нагрузку, чтобы проверить эффективность блока питания, и никогда не было проблем. Правда в случае с самым простым БП, который является трансформатором, диодным мостом и емкостью, значение тока показывается незначительно отклоненным.

Драйвер полевого транзистора

Если всё же требуется подключать нагрузку к n-канальному транзистору
между стоком и землёй, то решение есть. Можно использовать готовую
микросхему — драйвер верхнего плеча. Верхнего — потому что транзистор
сверху.

Выпускаются и драйверы сразу верхнего и нижнего плеч (например,
IR2151) для построения двухтактной схемы, но для простого включения
нагрузки это не требуется. Это нужно, если нагрузку нельзя оставлять
«висеть в воздухе», а требуется обязательно подтягивать к земле.

Рассмотрим схему драйвера верхнего плеча на примере IR2117.

Схема не сильно сложная, а использование драйвера позволяет наиболее
эффективно использовать транзистор.

Схема устройств для блоков на 20 А

Электронная нагрузка (схема показана ниже) для блоков на 20 А производится на базе двоичных резисторов. У них поддерживается стабильная высокая проводимость. Чувствительность при этом равняется примерно 6 мВ. Некоторые модификации выделяются высоким параметром перегрузки. Реле у моделей используются на волновых транзисторах. Для решения проблем с преобразованием используются компараторы. Расширители часто встречаются фазового типа. И у них может быть несколько переходников. При необходимости устройство можно собрать самостоятельно. Для этого применяется конденсаторный блок.

Номинальное напряжение у самодельных нагрузок стартует от 300 Вт, а частота в среднем составляет 400 кГц. Специалисты не советуют применять переходные компараторы. Регуляторы используются с обкладками. Для установки компаратора потребуется изолятор. Если рассматривать нагрузки на двух тиристорах, то там используются фильтры. В среднем емкость модуля равняется 3 пФ. Показатель рассеивания у самодельных моделей стартует от 50%

При сборке устройства особое внимание стоит уделять переходнику для подключения к блоку питания. Контакторы побираются полюсного типа

Они должны выдерживать большие перегрузки и не перегреваться.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Originally posted 2018-07-04 07:13:04.

Симисторы: принцип работы, проверка и включение, схемы

К сожалению, чаще бывает наоборот.

Как работает симистор?

Если у тиристора есть конкретные анод и катод, то электроды симистора так охарактеризовать нельзя, поскольку каждый электрод является и анодом, и катодом одновременно. Поэтому в отличие от тиристора, который проводит ток только в одном направлении, симистор способен проводить ток в двух направлениях. Именно поэтому симистор прекрасно работает в сетях переменного тока.

Очень простой схемой, характеризующей принцип работы и область применения симистора, может служить электронный регулятор мощности. В качестве нагрузки можно использовать что угодно: лампу накаливания, паяльник или электровентилятор.

Симисторный регулятор мощности

После подключения устройства к сети на один из электродов симистора подаётся переменное напряжение. На электрод, который является управляющим, с диодного моста подаётся отрицательное управляющее напряжение. При превышении порога включения симистор откроется, и ток пойдёт в нагрузку. В тот момент, когда напряжение на входе симистора поменяет полярность, он закроется. Потом процесс повторяется.

Чем больше уровень управляющего напряжения, тем быстрее включится симистор и длительность импульса на нагрузке будет больше. При уменьшении управляющего напряжения длительность импульсов на нагрузке будет меньше. После симистора напряжение имеет пилообразную форму с регулируемой длительностью импульса. В данном случае, изменяя управляющее напряжение, мы можем регулировать яркость электрической лампочки или температуру жала паяльника.

Симистор управляется как отрицательным, так и положительным током. В зависимости от полярности управляющего напряжения рассматривают четыре, так называемых, сектора или режима работы. Но этот материал достаточно сложен для одной статьи.

Если рассматривать симистор, как электронный выключатель или реле, то его достоинства неоспоримы:

  • Невысокая стоимость.

  • По сравнению с электромеханическими приборами (электромагнитными и герконовыми реле) большой срок службы.

  • Отсутствие контактов и, как следствие, нет искрения и дребезга.

К недостаткам можно отнести:

  • Симистор весьма чувствителен к перегреву и монтируется на радиаторе.

  • Не работает на высоких частотах, так как просто не успевает перейти из открытого состояния в закрытое.

  • Реагирует на внешние электромагнитные помехи, что вызывает ложное срабатывание.

Для защиты от ложных срабатываний между силовыми выводами симистора подключается RC-цепочка.

Величина резистораR1 от 50 до 470 ом, величина конденсатораC1 от 0,01 до 0,1 мкф. В некоторых случаях эти величины подбираются экспериментально.

Основные параметры симистора.

Основные параметры удобно рассмотреть на примере популярного отечественного симистора КУ208Г. Будучи разработан и выпущен достаточно давно, он продолжает оставаться востребованным у любителей сделать что-то своими руками. Вот его основные параметры.

  • Максимальное обратное напряжение – 400V. Это означает, что он прекрасно может управлять нагрузкой в сети 220V и ещё с запасом.

  • В импульсном режиме напряжение точно такое же.

  • Максимальный ток в открытом состоянии – 5А.

  • Максимальный ток в импульсном режиме – 10А.

  • Наименьший постоянный ток, необходимый для открытия симистора – 300 мА.

  • Наименьший импульсный ток – 160 мА.

  • Открывающее напряжение при токе 300 мА – 2,5 V.

  • Открывающее напряжение при токе 160 мА – 5 V.

  • Время включения – 10 мкс.

  • Время выключения – 150 мкс.

Как видим, для открывания симистора необходимым условием является совокупность тока и напряжения. Больше ток, меньше напряжение и наоборот

Следует обратить внимание на большую разницу между временем включения и выключения (10 мкс. против 150 мкс.)

Оптосимистор.

Современная и перспективная разновидность симистора – это оптосимистор. Название говорит само за себя. Вместо управляющего электрода в корпусе симистора находится светодиод, и управление осуществляется изменением напряжения на светодиоде. На изображении показан внешний вид оптосимистора MOC3023 и его внутреннее устройство.

Оптосимистор MOC3023

Устройство оптосимистора

Как видим, внутри корпуса смонтирован светодиод и симистор, который управляется за счёт излучения светодиода. Выводы, отмеченные как N/C и NC, не используются, и не подключаются к элементам схемы. NC – это сокращение от Not Connect, которое переводится с английского как «не подключается».

Самое ценное в оптосимисторе это то, что между цепью управления и силовой цепью осуществлена полная гальваническая развязка. Это повышает уровень электробезопасности и надёжности всей схемы.

Главная &raquo Радиоэлектроника для начинающих &raquo Текущая страница

Также Вам будет интересно узнать:

Связанные материалы

Электронная импульсная нагрузка на базе TL494…
Все электронщики, занимающиеся конструированием устройств электропитания, рано или поздно…

Узел коммутации обмоток выходных трансформаторов ламповых усилителей…
Последнее время все мучил меня вопрос о быстрой и безболезненной коммутации вторичных обмоток…

PIC16F873: универсальный таймер на 99 минут 59 секунд по мотивам блондинко-таймера Насти…
Когда-то, в прошлом веке фотолюбители пользовались пленочными фотоаппаратами, которые заправлялись…

«Бетник» для мощных транзисторов…
Описана конструкция прибора для измерения коэффициента усиления мощных транзисторов. Несмотря на…

УМЗЧ класс «А». С лампами, но не ламповый!…
Если посмотреть на фото этого усилителя, то первое, что приходит в голову: «Очередной гибридник с…

Лабораторный импульсный блок питания. Часть 5. Миниатюрный лабораторный ИБП…
Несмотря на простоту схем импульсных блоков питания, описанных в предыдущих частях серии,…

Реинкарнация компьютерных БП. Часть 3….
Из все тех же деталей компьютерного БП, используя абсолютный их минимум и не меняя практически…

Калькулятор электрика от Ivan219 …
Текущая версия 2.0.9.30 Своего рода «кухонный комбайн» для радиолюбителя. Может кому-то облегчит…

Балластный регулятор для ветрогенератора (ветряка)…
После того, как ветряк построен и работает, рано или поздно встает вопрос об утилизации лишней…

Taschibra (Ташибра, Tashibra). Лабораторный импульсный блок питания. Часть 2. ЛБП на компараторах + блок защиты…
Продолжая тему о быстром изготовлении лабораторного блока питания (далее ЛБП) из доступных…

Применение электронных трансформаторов Taschibra (Ташибра, Tashibra) в радиолюбительской практике…
При сборке собственных конструкций проблема радиолюбителя номер два (после изготовления хорошего…

Регулятор мощности на полевых транзисторах с ШИ-управлением + устройство для питания 110-вольтовой аппаратуры от 220 Вольт…
Привет всем датагорцам и гостям Датагории! Предлагаю схемку простого в изготовлении и наладке…

USB нагрузка 1А и 2А с переключателем. USB резистор нагрузочный

Сейчас очень часто в различных источниках питания и зарядных устройствах используется USB разъем, подключаясь к которому пользователь должен быть уверен в соответствии параметров, выдаваемых тока и напряжения данным источником. Для проверки этих характеристик вместе с тестером и нужна USB нагрузка 1А и 2А с переключателем.

USB нагрузка выполнена в виде небольшой платы, на одном конце которой имеется USB разъем, на другом конце размещен переключатель для переключения режимов, а по середине размещены два резистора. Оба резистора имеют номинал 5 Ом.

Переключатель позволяет включить один резистор, что будет соответствовать потреблению тока в 1 А, и два резистора параллельно, после чего нагрузка будет потреблять 2 А. Включение того или иного режима сигнализируется соответствующим цветом светодиода. Зеленый – 1 А, красный – 2 А.

Купить USB нагрузка 1А и 2А с переключателем. Также у других продавцов здесь.

Резисторы, установленные на USB нагрузке, не рассчитаны на потребляемый ток.

Их номинал соответствует действительности в 5 Ом, но при протекании через них тока в 1 А они очень сильно греются, причем нагреваются до температуры, при которой к ним невозможно прикоснуться.

Применяется такая USB нагрузка с резисторами для тестирования параметров зарядных устройств для телефонов и различных повербанков.

Возможно Вас это заинтересует:
Весы электронные mh 500
USB тестер емкости
Невидимые ультрафиолетовые чернила
Шарики с лампочками

Usb Электронная Нагрузка Своими Руками

18.01.2019 17:572019-01-18T14:57:59.000Z

Прототип печатной платы за 2 доллара (любой цвет): https://jlcpcb.com
Архив проекта http://www.kit-shop.org/zip/emkakk.zip
Воруем у китайцев 4 https://www.youtube.com/watch?v=1z_VhYNfS2w Как производят платы на заводе https://www.youtube.com/watch?v=kHFdNY0SlZQ Как производят паяльные трафареты https://www.youtube.com/watch?v=Rfx4Ni_aOA0&t
USB нагрузка http://ali.pub/31lezi http://buyeasy.by/redirect/cpa/o/plj6exim0af0umoxvxk08cyc2hl6kpen/ IRFZ44 http://ali.pub/31lf64 http://buyeasy.by/redirect/cpa/o/plj6dv5vljyfp2bsocmrsrluf2ps59ej/ LM358 http://ali.pub/31lf30 http://buyeasy.by/redirect/cpa/o/plj6edkc20o16gtj3hcgb60udlnojezw/ Набор резисторов http://ali.pub/31lexr http://buyeasy.by/redirect/cpa/o/plj6g0f9kodd1925gc8hesh6718484fi/ Мое лабораторное оборудование Лабораторный блок питания http://ali.pub/2tmanr http://buyeasy.by/redirect/cpa/o/pgut0emyulke7qmjzhr2e4v7cwfazi6m/ Мультиметр 1 http://ali.pub/2tm7hm http://buyeasy.by/redirect/cpa/o/pgusgtp4q2d2zyy0kpffajgo1p3zlsv5/
Мультиметр 2 http://ali.pub/2tm7xk http://buyeasy.by/redirect/cpa/o/pgushfzsyim8tw3js4drme4896f75201/
Мультиметр 3 http://ali.pub/2tmcks http://buyeasy.by/redirect/cpa/o/pgutt2evz1nn9eqpyw6hv9w6v5gyoukv/
Мультиметр 4 http://ali.pub/2tm9qb http://buyeasy.by/redirect/cpa/o/pgustdqyllvoylaj96l3pebfl1a3sdce/
Токовые клещи http://ali.pub/2tm9yo http://buyeasy.by/redirect/cpa/o/pgusu7s27csmr6b731noppd74me3usw1/
Измеритель емкостей и индуктивности http://ali.pub/2tm945 http://buyeasy.by/redirect/cpa/o/pgusrt72ef7lmbg1emkc95fm7ts32qin/
Универсальный генератор сигналов http://ali.pub/2tmgij http://buyeasy.by/redirect/cpa/o/pguu888x4ov8u31du61088zn4y9p6rs7/
Осциллограф http://ali.pub/2tmb1d http://buyeasy.by/redirect/cpa/o/pgut1jb6px59qjgc0xi45ag54fqstywi/
Транзистор тестер http://ali.pub/2tma7t http://buyeasy.by/redirect/cpa/o/pguswkwm96b9k1465byjz3wzlnzjsee0/
Термометр http://ali.pub/2tm8sa http://buyeasy.by/redirect/cpa/o/pguspjkvjoclopht6lwqu8argyg28d67/
Частотомер http://ali.pub/2tmigc http://buyeasy.by/redirect/cpa/o/pguuigzkvwkis9waxxuaal3azhh7gtq7/
Электронная нагрузка http://ali.pub/2tmagy http://buyeasy.by/redirect/cpa/o/pguszjbf4fq9bppm79bxdwwea9w3esbc/
Интеллектуальный тестер микросхем http://ali.pub/2tmicu http://buyeasy.by/redirect/cpa/o/pguug84x0wiygwms2dyhfgoqsb9vtex2/
Паяльник http://ali.pub/2tmbm6 http://buyeasy.by/redirect/cpa/o/pgut72on83yaf81eb19g3nfp7x9mzgzk/
Микроскоп http://ali.pub/2tminc http://buyeasy.by/redirect/cpa/o/pguulswiso62yj6qy6v5jvcvy23n3x1x/
Заработать на Aliexpress
http://epngo.bz/epn_index/29c81
Вернуть 8.5% от покупок http://ali.pub/21o6mg Наши сайты
http://vip-cxema.org/ http://www.kit-shop.org/
Подписывайтесь на наши группы ВК
https://vk.com/club79283215 https://vk.com/club54960228
Мой второй канал https://www.youtube.com/channel/UCO9r0ovR_10Cgq8kOgnFl8Q
Мой инстаграм https://www.instagram.com/akakasyan/

Помощь в развитии проектов http://donatepay.ru/d/aka

Electronic Load Usb Load Usb Electronic Load Usb Нагрузка Своими Руками Схема Usb Электронной Нагрузки Usb Электронная Нагрузка Стабилизатор Тока Схема Стабилизатора Тока Стабилизатор Тока На Оу Стабилизатор Тока На Полевом Транзисторе Стабилизатор Тока На Lm358

Usb Электронная Нагрузка Своими Руками.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector