Интегральные микросхемы и работа с ними

Что такое контроллер управления?

Само слово контролер, буквально обозначает управление. Устройство, называемое контроллер, буквально означает — устройство, предназначенное для управления, чем либо.

Самым простым и понятным примером контроллер компьютера, который управляет внешними устройствами клавиатурой и мышью компьютера.

Чтобы был понятен спектр охватываемых приборов и устройств, именуемых контроллеры, приведу более сложный пример — контроллеры ControlLogix. Эта система на базе одного автономного контроллера и модулями ввода/вывода позволяет осуществлять дискретное управление постоянными процессами, управление приводами, сервоприводами в самых различных комбинациях.

Используются программируемые контроллеры для автоматического контролирования работы машин, процессов упаковки, автоматизации зданий и конвейеров, управления освещением зданий и систем безопасности.

Еще один пример, это контролер умного дома. Это базовое устройство для работы данной системы. Без контроллеров управления не обходится ни одна система «умный дом». К входам контроллера «умного дома»  подключаются различные датчики (утечки воды, наличие газа, дыма, датчики движения и т.д.). К выходам прибора подключаются сервоприводы и реле управления, которые в автоматическом режиме могут отключить газ, воду, регулировать и управлять светом дома.

Применение компаратора

Используются в схемах измерения электрических сигналов и в аналогово-цифровых преобразователях. В логических цепях работают элементы «или» и «не», также являющиеся компараторами. Соответственно, использование этого компонента не ограничивается конкретными примерами, поскольку он применяется повсеместно.

Стоит отметить, что устройство сравнения можно сделать из любого операционного усилителя, но не наоборот. Коэффициент усиления компаратора достаточно высок. Соответственно, его входы очень чувствительны к разнице напряжений между ними. Расхождение в несколько милливольт значительно изменяет напряжение выхода.

Таким образом, компаратор позволяет наблюдать минимальные колебания уровней входных напряжений.

Это делает его незаменимым элементом схем сравнения и измерительных приборов высокой точности:

  • индикаторы уровня входящего сигнала;
  • металлоискатели;
  • микро- и милливольтметры;
  • детекторы электромагнитных излучений;
  • лабораторные датчики;
  • компараторы массы;
  • газоанализаторы.

Базовые блоки

Все цифровые схемы сводятся к нескольким стандартным логическим элементам. Это примерно как кубики Lego в детском конструкторе. Их можно комбинировать, соединять друг с другом и получать новые схемы. Для каждого элемента я привел таблицу истинности — соответствие между входными и выходными сигналами.

Существуют еще диаграммы Венна, но, на мой взгляд, они совершенно лишние и только осложняют дело. Впрочем, если ты предпочитаешь графическое представление, то можешь ознакомиться и с ними.

NOT

Самый простой вентиль, представляет собой логическое отрицание и инвертирует сигнал на единственном входе. Так как у нас всего два возможных состояния, таблица истинности совсем крохотная. В С/C++ это оператор , хотя там его действие распространяется на любые переменные с числовым значением, не только бинарные.

Обрати внимание, что на рисунке выше (и на всех последующих) приведены два символа для обозначения конкретного элемента на схемах. Слева — американский вариант (ANSI), справа — его европейский аналог (МЭК и ГОСТ)

Второй стандарт сейчас уже редко где применяется, и даже в русскоязычной литературе почти всегда используется графически более наглядный стандарт ANSI.

AND

Сигнал на выходе этого вентиля равен логической единице только тогда, когда на всех входах присутствует высокий уровень. При этом количество входов может быть любым — таблица истинности изменится незначительно. Кроме того, ничто не мешает каскадировать такие элементы, подавая выход одного вентиля на вход другого.

Традиционно таблица рисуется именно таким образом: сперва все входы находятся в состоянии логического ноля, а затем последовательно инвертируется один из разрядов, начиная с младшего. Можно смотреть на это и с другой стороны — как будто все входы кодируют какое-то число (в двоичном представлении) и в каждой строке мы прибавляем к нему по единичке, проходя все возможные значения.

В С/С++ существует аж два аналога для этого вентиля: булево И (оператор &) и логическое И (оператор &&). Первый применяется для проверки флагов и других операций над отдельными битами числа, тогда как второй используется в логических выражениях.

OR

Здесь выход находится в состоянии логического ноля, только когда все входы равны нулю. Остальные комбинации приводят к высокому уровню на выходе.

Вместе и — это два основных строительных «кирпичика» цифровой логики. Сразу возникает вопрос, как их отличать друг от друга на схемах. Конечно, все решает практика, и со временем они запомнятся сами собой, но можно воспользоваться простым правилом: форма элемента со стороны входов соответствует первой букве в английском обозначении.

Так, округлость вентиля напоминает очертания буквы O, а прямая линия элемента явно позаимствована из буквы А. Звучит немного нелепо, но главное, что это работает.

Аналогично ситуации с для вентиля в языках программирования С/С++ используется булево ИЛИ (оператор ) и логическое ИЛИ (оператор ).

XOR

Наконец, последний из базовых элементов в нашем списке — функция исключающего ИЛИ (). На первый взгляд его таблица истинности выглядит странной, но легко запоминается — высокий уровень на выходе, только когда входы отличаются друг от друга. Однако не все так просто.

В общем случае (больше двух входов) этот вентиль реализует самую неочевидную функцию из рассмотренных: если на входах нет логических единиц или если их количество четное, то на выходе ноль, в любом другом случае — единица.

В C/C++ это оператор и с ним связана забавная возможность обменять значения двух числовых переменных без участия временной переменной для промежуточного хранения (свойство самообратимости). И все в одной строчке:

Но вернемся к нашим вентилям. Иногда в их список добавляют также сочетания с : , и . При желании можешь вывести их таблицы истинности самостоятельно, это не составляет никакого труда.

Вариант 1. Присоединись к сообществу «Xakep.ru», чтобы читать все материалы на сайте

Членство в сообществе в течение указанного срока откроет тебе доступ ко ВСЕМ материалам «Хакера», увеличит личную накопительную скидку и позволит накапливать профессиональный рейтинг Xakep Score!
Подробнее

Вариант 2. Открой один материал

Заинтересовала статья, но нет возможности стать членом клуба «Xakep.ru»? Тогда этот вариант для тебя!
Обрати внимание: этот способ подходит только для статей, опубликованных более двух месяцев назад.

Я уже участник «Xakep.ru»

Схемотехника для начинающих и чайников

Честно говоря, я не очень люблю термин «чайник», по мне лучше говорить «начинающий», но здесь все зависит от того кто как себя сам позиционирует.

Здесь я планирую рассмотреть самые основы схемотехники, ее азы, причем ограничиваться просто публикацией различных схем не собираюсь.

Несмотря на то, что схемотехника рассматривает все устройства как «черные ящики», то есть, игнорируя физические процессы, определяющие принцип их работы, для введения в схемотехнику, считаю необходимым уделять внимание рассмотрению принципов работы отдельных компонентов, их элементарных сочетаний, однако, делать это буду без излишнего «фанатизма». Дело в том, что помимо достаточно сложных радиоэлементов, к которым относятся, например, всевозможные микросхемы, внутреннее устройство которых мы рассматривать не будем (начинающим это сложно) схемотехника использует различные дискретные элементы — диоды, резисторы, стабилитроны и пр., знание основных принципов работы которых может оказаться полезным

Дело в том, что помимо достаточно сложных радиоэлементов, к которым относятся, например, всевозможные микросхемы, внутреннее устройство которых мы рассматривать не будем (начинающим это сложно) схемотехника использует различные дискретные элементы — диоды, резисторы, стабилитроны и пр., знание основных принципов работы которых может оказаться полезным.

Хочу отметить две основные задачи схемотехники:

  • построение схемы какого либо устройства на базе отдельных элементов,
  • анализ работы того или иного изделия на основе работы его составных частей.

Кстати, поскольку любое, даже самое сложное устройство, может быть приведено к достаточно простым комбинациям электрических (электронных) компонентов настоятельно рекомендую начинающим схемотехникам уделить должное внимание вопросам функционирования именно элементарных узлов. Должен заметить, что схемотехника — направление достаточно сложное, требует специальных знаний в целом ряде смежных областей, однако, начинающим может хватить элементарного владения основными законами электротехники — Ома и Кирхгофа, тем более, что задачу подготовки инженеров — разработчиков электронной аппаратуры не ставлю

Должен заметить, что схемотехника — направление достаточно сложное, требует специальных знаний в целом ряде смежных областей, однако, начинающим может хватить элементарного владения основными законами электротехники — Ома и Кирхгофа, тем более, что задачу подготовки инженеров — разработчиков электронной аппаратуры не ставлю.

Менее всего претендуя на создание всеобъемливающего пособия по схемотехнике, надеюсь, что предлагаемые статьи будут полезны для начинающих, желающих приобрести первоначальные знания о разработке, анализе различных схем.

На данный момент доступны следующие материалы:

Резисторы — элементы, без которых представить схемотехнику невозможно.

Диоды — тоже достаточно простые приборы, однако, могут находить применение в очень простых, одновременно полезных схемах. Схемотехника использует их очень часто.

Транзисторы. Транзистор был изобретен в 50-х годах прошлого века, его появление произвело настоящий фурор — достаточно сказать, что его изобретатели получили Нобелевскую премию.

2012-2018 г. Все права защищены.

Номинальное напряжение питания для логических радиоэлементов (микросхем) и номинальное значение логического 0 и логической 1

Элементы ТТЛ работают при номинальном напряжении питания 5 вольт, +/- 0,25 вольт. В идеале, сигнал высокого логического уровня должен быть равен ровно 5,00 В, а сигнал низкого уровня — ровно 0,00 вольт. Однако в реальных элементах ТТЛ не могут быть обеспечены подобные точные уровни напряжения, поэтому они могут принимать сигналы высокого и низкого уровней даже при значительном отклонении напряжения от идеальных величин. «Приемлемые» напряжения входного сигнала лежат в диапазоне от 0 до 0,8 вольт для низкого логического уровня, и от 2 до 5 вольт для высокого логического уровня. «Приемлемые» напряжения выходного сигнала (уровни напряжения, гарантируемые производителем элемента в указанных вариантах нагрузки) лежат в диапазоне от 0 до 0,5 вольт для низкого логического уровня, и от 2,7 до 5 вольт для высокого логического уровня.

 Если бы на вход элемента ТТЛ поступил сигнал напряжения в диапазоне от 0,8 до 2 вольт, то мы не получили бы гарантированной реакции схемы. Подобный сигнал будет рассматриваться как неопределённый, и в этом случае ни один производитель не даст гарантии того, к какому логическому уровню отнесёт схема подобный сигнал.Как вы видите, диапазон допусков по уровням выходного сигнала меньше, чем в случае для входного сигнала. Это необходимо для обеспечения того, что цифровой сигнал, поступающий с выхода одного элемента логики на вход другого элемента, воспринимался бы таковым же, но с учетом условий потери и воздействия на него. Разница допусков между входным и выходным сигналами называется запасом схемы по помехоустойчивости. Для ТТЛ-схем, запас помехоустойчивости для низкого логического уровня представляет разность между 0,8 В и 0,5 В (т.е. 0,3 В), в то время как запас помехоустойчивости для высокого уровня равен 0,7 В (2,7 В — 2,0 В). Проще говоря, запас помехоустойчивости есть некий запас на паразитное или шумовое напряжение, которое может быть наложено на исходный сигнал, прежде чем принимающая схема может неверно его проинтерпретировать.

 Спецификации входных и выходных сигналов схем КМОП логических элементов совершенно отличны от уровней напряжения, используемых для ТТЛ-элементов. Для КМОП-элементов, работающих при напряжении питания 5 вольт, приемлемые напряжения входного сигнала лежат в диапазоне от 0 до 1,5 вольт для низкого логического уровня, и от 3,5 до 5 вольт для высокого логического уровня. «Приемлемые» напряжения выходного сигнала (уровни напряжения, гарантируемые производителем элемента при указанном варианте нагрузки) лежат в диапазоне от 0 до 0,05 вольт для низкого логического уровня, и от 4,95 до 5 вольт для высокого логического уровня.

 Представленные значения дают понять, что запас помехоустойчивости КМОП логических элементов гораздо больше аналогичного показателя ТТЛ-элементов: 1,45 вольт как для логического нуля, так и для логической единицы, против максимального запаса в 0,7 В в случае ТТЛ. Другими словами, КМОП-схемы могут выдержать более чем вдвое высокий наложенный шум на входе без ошибок интерпретации сигнала как логического нуля или единицы.Запас помехоустойчивости КМОП логических схем становится ещё больше при более высоких рабочих напряжениях. В отличие от элементов ТТЛ, напряжение питания которых не превышает 5 вольт, напряжение питания КМОП-схем может достигать 15 (а в некоторых случаях и 18) вольт. Ниже показаны приемлемые уровни логических нуля и единицы, для выхода и входа КМОП-ИС, работающих при напряжении питания 10 и 15 вольт соответственно:

 Запас помехоустойчивости может быть выше того, что показано на предыдущем рисунке. На рисунке показан худший из возможных вариантов поведения сигнала на основании спецификаций производителя. На практике логическая схема может выдержать сигналы высокого логического уровня со значительно меньшим напряжением и сигналы низкого логического уровня с гораздо большим напряжением чем указано.И наоборот, исключительно малые показанные запасы помехоустойчивости — гарантирующие выходное состояние сигналов высокого и низкого логических уровней с точностью до 0,05 вольта напряжения питания — практически реальны. Такие «добротные» уровни выходного напряжения будут доступны только при минимальной нагрузке. При значительном втекающем или вытекающем токе схемы выходное напряжение не будет поддерживаться на этих оптимальных уровнях, что обусловлено наличием внутреннего сопротивления каналов выходных МОП-транзисторов логических элементов.

Аналоговые микросхемы

Аналоговые интегральные микросхемы (ИМС) предназначены для преобразования аналоговых сигналов. Аналоговые ИМС используют в аппаратуре связи, телевизионной аппаратуре, радиолокации, медицинской технике и тому подобное. Они более разнообразны, чем цифровые и имеют меньшую плотность упаковки элементов.

По конструктивно-технологичным особенностям аналоговые ИМС могут быть гибридными или полупроводниковыми и изготавливаться на биполярных или полевых транзисторах.

Аналоговые микросхемы делятся на две группы. К первой группе относятся ИМС универсального назначения: операционные усилители, матрицы транзисторов, диодов и т.д., ко второй — специализированные аналоговые ИМС. Интегрированные сверхвысокочастотные (СВЧ) — микросхемы считают специализированными ИМС, но они имеют конструктивно технологическую, схемотехническую и функциональную специфику, что является причиной выделения их в отдельную подгруппу.

Среди аналоговых ИМС выделяют также многоцелевые усилители (операционные усилители). Они предназначены для усиления сигналов в широком диапазоне частот. Ими являются усилители низких, промежуточных и высоких частот. Серия аналоговых операционных усилителей охватывает широкий спектр различного функционального назначения, в совокупности дают возможность разрабатывать определенную группу аналоговых устройств в микроэлектронном исполнении.


Внутренняя схема простого операционного усилителя К140УД7 (LM741)

Аналоговые микросхемы универсальные и многофункциональные. Эти качества закладывают в них при разработке. Многофункциональные микросхемы изготавливают в массовом производстве. Узкоспециализированные ИМС не пользуются большим спросом, производятся в малом количестве или на заказ, поэтому они дорогие. Аналоговым ИМС, особенно операционным усилителям, свойственна функциональная перенасыщенность по большинству параметров. Это позволяет проектировать приборы промышленной электроники на базе интегральных микросхем с высокими техническими и эксплуатационными показателями.

Особенности аналоговой интегральной схемотехники

Аналоговые интегральные микросхемы предназначены для усиления, обработки и преобразования электрических сигналов, параметры которых изменяются по закону непрерывной функции. К таким аналоговым ИМС принадлежат операционные усилители, интегральные стабилизаторы, компаратора и другие схемы, состоящие из базовых схемотехнических элементов, например, элементарных усилительных каскадов, дифференциальных усилителей, каскадов смещения потенциальных уровней, генераторов стабильного тока, источников опорного напряжения, конечных усилительных каскадов. Эти элементарные схемы широко используются как при проектировании известных, так и при создании новых линейных ИМС.

При разработке полупроводниковых аналоговых ИМС большое внимание уделяется повышению технологичности микросхем, то есть уменьшению количества технологических операций. Это достигается использованием транзисторных структур не только как элементов усиления, а также для выполнения функций пассивных элементов, например, как резисторов, конденсаторов и т

д

При этом важно, чтобы у схемы была низкая чувствительность к разбросу параметров, что увеличивает процент выхода годных ИМС

Для аналоговых микросхем характерно использования обратных связей как с целью повышения электрических характеристик, так и для расширения функциональных возможностей, например, для выборочного усиления, коррекции характеристик и т. п. Поэтому разработчики радиоаппаратуры вводят внешние цепи обратных связей. Необходимо отметить, что в принципиальных схемах ИМС пытаются избежать местных обратных связей. Например, введение глубокого обратной связи для стабилизации режима работы усилительных каскадов по постоянному току (режим покоя) приводит к заметному уменьшению коэффициента усиления. Поэтому чаще всего режим стабилизируют параметрическими способами, используя транзисторные структуры в диодном включении.

Связь между отдельными каскадами в схеме ИМС непосредственная, без переходных конденсаторов. При этом встает проблема согласования как отдельных каскадов в составе микросхемы, так и отдельных микросхем между собой. Для такого согласования необходимо, чтобы потенциалы входящей и исходящей напряжений были близки к потенциалу общей клеммы источника питания. Это достигается, в частности, с помощью каскадов смещения потенциального уровня.

Логический элемент в линейном режиме

Использование логических элементов цифровых микросхем для работы с аналоговыми сигналами возможно лишь в случае, если их режим выведен в линейный или близкий к нему. Так в линейном режиме ТТЛ элемент эквивалентен усилителю к коэффициентом усиления 10 … 15 (примерно 20 дБ), а элемент КМОП – усилителю с коэффициентом усиления 10 … 20 (20 … 26 дБ).

Вывод логического элемента в линейный режим: слева-направо током, напряжением, обратной связью.

Для вывода логического элемента на линейный участок применяют различные способы. Один из них основан на включении на входе элемента ТТЛ резистора R. Этот резистор вызовет ток, который будет протекать через эмиттерный переход входного транзистора элемента ТТЛ. Изменяя сопротивление внешнего резистора, можно изменять напряжение на выходе элемента, то есть изменять положение его рабочей точки на передаточной характеристике. Для элементов ТТЛ сопротивление такого внешнего резистора составляет от 1 кОм до 3 кОм. Однако такой способ не применим для КМОП микросхем, так как они работают без выходных токов (есть токи утечки, но они малы и нестабильны).

Второй способ вывода логического элемента на рабочий режим может быть подача на вход соответствующего напряжения, например с помощью резистивного делителя. Так, для элементов ТТЛ середина линейного участка передаточной характеристики соответствует входное напряжение 1,5…1,8 В, а для КМОП 3…6 В (при напряжении питания 9 В). Для разных логических элементов это напряжение не одинаково, поэтому его подбирают опытным путём. Номиналы входных резисторов выбирают таким образом, что бы входные токи элементов не влияли на напряжение, снимаемое с резистивного делителя.

Третий способ, является наиболее эффективным, для этого создают отрицательную обратную связь (ООС) по постоянному току между входом и выходом элемента, благодаря чему рабочая точка автоматически поддерживается на требуемом участке передаточной характеристики и не требуется тщательного подбора внешних резисторов. Этот способ реализуется для логических элементов с инверсией входного сигнала: НЕ, И-НЕ, ИЛИ-НЕ.

Сопротивление резистора в цепи ООС выбирают исходя из обеспечения элементу необходимого входного тока. Для элементов КМОП оно составляет от нескольких килоом до десятков мегаом, а для ТТЛ – от десятков Ом до 1 кОм. Но применение ООС снижает коэффициент усиления элемента.

Технический и электронный кремний

Не слукавлю, если буду утверждать, что современный микропроцессор — одна из наиболее сложных конструкций, созданных человеком. Только представьте: на слитке кремния размером со спичечный коробок путем сложных манипуляций удается напечатать миллиарды транзисторов, которые соединены в сложные цепи!

Но начнем по порядку. Вероятно, из школьного курса химии вы помните, что в чистом виде кремний в природе почти не встречается. Однако это вещество по объему присутствия на Земле занимает второе место — его доля в земной коре достигает 30%.

Производство начинается с плавки песка в дуговых печах при температуре 1800 градусов и его восстановления коксом. Получается так называемый технический кремний, чистота которого может достигать 99%. Этого мало. Нужен электронный, с содержанием не более одного чужеродного атома на миллиард атомов кремния.

Путем многократного хлорирования с использованием сложных химических реакций, формулы которых я с вашего позволения приводить здесь не буду, и производят фактически идеально чистый кремний. Однако он пока пребывает в жидком состоянии.

Правовая защита

Законодательство России предоставляет правовую охрану топологиям интегральных микросхем. Топологией интегральной микросхемы является зафиксированное на материальном носителе пространственно-геометрическое расположение совокупности элементов интегральной микросхемы и связей между ними (ст. 1448 ГК РФ).

Автору топологии интегральной микросхемы принадлежат следующие интеллектуальные права:

  1. исключительное право;
  2. право авторства.

Автору топологии интегральной микросхемы принадлежат также другие права, в том числе право на вознаграждение за использование служебной топологии.

Исключительное право на топологию действует в течение десяти лет. Правообладатель в течение этого срока может по своему желанию зарегистрировать топологию в Федеральной службе по интеллектуальной собственности, патентам и товарным знакам.

Обозначения радиодеталей на принципиальных схемах

УГО — это условно графическое изображения радиодетали на схеме. Некоторые УГО различаются друг от друга.

Например, в США обозначение резисторов отличается от СНГ и Европы.

Из-за этого меняется восприятие схемы.

Однако внешне и по обозначениям они похожи. Или например, транзисторы. Где-то они чертятся с кругами, а где-то без. Могут различаться размеры и угол стрелок. В таблице представлены УГО отечественных радиодеталей.

УГО
Название

Биполярный n-p-n транзистор

Биполярный p-n-p транзистор

Однопереходный транзистор с n базой

Однопереходный транзистор с p базой

Обмотка реле

Заземление

Диод

Диодный мост

Диод Шотки

Двуханодный стабилитрон

Двунаправленный стабилитрон

Обращенный диод

Стабилитрон

Туннельный диод

Варикап

Катушка индуктивности

Катушка индуктивности с подстраиваемым сердечником

Катушка индуктивности с сердечником

Классический трансформатор

Обмотка

Регулируемый сердечник

Электролитический конденсатор

Неполярный конденсатор

Опорный конденсатор

Переменный конденсатор

Подстроечный конденсатор

Двухпозиционный переключатель

Герконовый переключатель

Размыкающий переключатель

Замыкающий переключатель

Полевой транзистор с каналом n типа

Полевой транзистор с каналом p типа

Быстродействующий плавкий предохранитель

Инерционно-плавкий предохранитель

Плавкий предохранитель

Пробивной предохранитель

Термическая катушка

Тугоплавкий предохранитель

Выключатель-предохранитель

Разрядник

Разрядник двухэлектродный

Разрядник электрохимический

Разрядник ионный

Разрядник роговой

Разрядник шаровой

Разрядник симметричный

Разрядник трехэлектродный

Разрядник трубчатый

Разрядник угольный

Разрядник вакуумный

Разрядник вентильный

Гнездо телефонное

Разъем

Разъем

Переменный резистор

Подстроечный резистор

Резистор

Резистор 0,125 Вт

Резистор 0,25 Вт

Резистор 0,5 Вт

Резистор 1 Вт

Резистор 2 Вт

Резистор 5 Вт

Динистор проводящий в обратном направлении

Динистор запираемый в обратном направлении

Диодный симметричный тиристор

Тетродный тиристор

Тиристор с управлением по катоду

Тиристор с управлением по аноду

Тиристор с управлением по катоду

Тиристор триодный симметричный

Запираемый тиристор с управлением по аноду

Запираемый тиристор с управлением по катоду

Диодная оптопара

Фотодиод

Фототиристор

Фототранзистор

Резистивная оптопара

Светодиод

Тиристорная оптопара

Какими буквами обозначаются радиодетали на схемах

Буквенное обозначение на схеме Радиодеталь
R Резисторы (переменный, подстроечный и постоянный)
VD Диоды (стабилитрон, мост, варикап и т.д.)
C Конденсаторы (неполярный, электролитический, переменный и т.д.)
L Катушки и дроссели
SA Переключатели
FU Предохранители
FV Разрядники
X Разъемы
K Реле
VS Тиристоры (тетродные, динисторы, фототиристоры и т.п.)
VT Транзисторы (биполярные, полевые)
HL Светодиоды
U Оптопары

Post Views:
3 272

Кристалл и подложка

Кри­стал­лы — это такие твёр­дые тела, в кото­рых ато­мы и моле­ку­лы веще­ства нахо­дят­ся в стро­гом поряд­ке. Про­ще гово­ря, ато­мы в кри­стал­ле рас­по­ло­же­ны пред­ска­зу­е­мым обра­зом в любой точ­ке. Это поз­во­ля­ет точ­но пони­мать, как будет вести себя это веще­ство при любом воз­дей­ствии на него. Имен­но это свой­ство кри­стал­ли­че­ской решёт­ки исполь­зу­ют на про­из­вод­стве про­цес­со­ров.

Самые рас­про­стра­нён­ные кри­стал­лы — соль, дра­го­цен­ные кам­ни, лёд и гра­фит в каран­да­ше.

Боль­шой кри­сталл мож­но полу­чить, если крем­ний рас­пла­вить, а затем опу­стить туда зара­нее под­го­тов­лен­ный малень­кий кри­сталл. Он сфор­ми­ру­ет вокруг себя новый слой кри­стал­ли­че­ской решёт­ки, полу­чив­ший­ся слой сде­ла­ет то же самое, и в резуль­та­те мы полу­чим один боль­шой кри­сталл. На про­из­вод­стве он весит под сот­ню кило­грамм, но при этом очень хруп­кий.

Гото­вый кри­сталл крем­ния.

После того, как кри­сталл готов, его наре­за­ют спе­ци­аль­ной пилой на дис­ки тол­щи­ной в мил­ли­метр. При этом диа­метр тако­го дис­ка полу­ча­ет­ся око­ло 30 сан­ти­мет­ров — на нём будет созда­вать­ся сра­зу несколь­ко десят­ков про­цес­со­ров.

Каж­дую такую пла­стин­ку тща­тель­но шли­фу­ют, что­бы поверх­ность полу­чи­лась иде­аль­но ров­ной. Если будут зазуб­ри­ны или шеро­хо­ва­то­сти, то на сле­ду­ю­щих эта­пах диск забра­ку­ют.

Гото­вые отпо­ли­ро­ван­ные пла­сти­ны крем­ния.

Принцип действия аналогового компаратора

Аналоговый компаратор сравнивает непрерывные сигналы – входной измеряемый и входной опорный. 

При медленном изменении входного сигнала, происходит многократное переключение компаратора за малый отрезок времени.

Такое явление называют «электронным дребезгом». Его наличие значительно снижает эффективность сравнения. Поскольку часто повторяющиеся смены состояния выхода, вводят оконечный транзистор в состояние насыщения.

Для уменьшения эффекта «электронного дребезга», в схему вводят ПОС – положительную обратную связь.

Она обеспечивает гистерезис – небольшую разницу между уровнем напряжения включения и отключения.

Некоторые компараторы имеют встроенную ПОС, что уменьшает количество дополнительных элементов построения конструкции.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ TSH-06F

Характеристики тестера
Режимы работы автоматический режим тестирования; ручные режимы тестирования: режим 5,0 В и режим 3,3 В
автоопределение модели компонента, тестирование работоспособности компонента
Поддерживаемые микросхемы
74HC тест микросхем серии 74HC стандартной логики, около 900 номиналов (автоматический режим определения модели, при необходимости ввести вручную модель)
74LS тест микросхем серии 74LS стандартной логики (автоматический режим определения модели, при необходимости ввести вручную модель)
CD40 тест микросхем серии CD40, реализующих различные логические функции (автоматический режим определения модели, при необходимости ввести вручную модель)
HEF40 тест микросхем серии HEF4000, реализующих различные логические функции (автоматический режим определения модели, при необходимости ввести вручную модель)
45/145 тест микросхем серии 45 и серии 145 (автоматический режим определения модели, при необходимости ввести вручную модель)
Прочие интегральные схемы идентификация и тест микросхем MAX232, MAX485, 75175, 75176, 75c11 и другие (автоматический режим определения модели, при необходимости ввести вручную модель)
Поддерживаемые электронные компоненты
AMP операционные усилители, компараторы серии LM324, LM358, LM339, LM393, LM2902 и другие (ручной ввод модели)
TR транзисторы (определение модели, типа, структуры, работоспособности и цоколевки выводов эмиттера, коллектора и базы), NPN и PNP транзистор, N-MOS и P-MOS транзисторы (автоматическая идентификация модели), режим «TR» выбирается вручную
ZD стабилитроны с напряжением стабилизации 50 В с точностью 0.01 В (автоматическая идентификация модели), режим «ZD» выбирается вручную
LIGHT оптопары (оптроны) TLP521-1, PC817, PC923, 4n25, HCNW4506, BRT11/12/13, HCPL 3101 и другие (автоматическая идентификация модели), режим «LIGHT» выбирается вручную
OFF определение неисправности компонента
Автоотключение после 60 сек бездействия
Микроконтроллер прибора    STC12C5A60S2
Подключение радиодеталей первый вывод микросхемы — верхний левый вывод тестовой колодки
выводы транзистора — 10, 11, 12 выводы тестовой колодки
выводы стабилитрона — 13 (катод), 14 выводы тестовой колодки
выводы оптрона — 1 (анод), 2 (катод), 23(эмиттер), 24 (коллектор) выводы тестовой колодки
Общие характеристики
Дисплей ЖК-дисплей 1602 с подсветкой, размером 36 мм х 10 мм
Питание 2 батареи типа АА 1,5 В
Габариты 70 мм х 25 мм х 135 мм
Вес 120 г
Комплектация IC тестер микросхем TSH-06F – 1 шт

Схемотехника

Схема логического элемента, выполняющего логическую функцию 2И-НЕ

Топология логического элемента 2И-НЕ (схема)

Для примера рассмотрим схему вентиля 2И-НЕ, построенного по технологии КМОП.

  • Если на оба входа A и B подан высокий уровень, то оба транзистора снизу на схеме открыты, а оба верхних закрыты, то есть выход соединён с землёй.
  • Если хотя бы на один из входов подать низкий уровень, соответствующий транзистор сверху будет открыт, а снизу — закрыт. Таким образом, выход будет соединён с напряжением питания и отсоединён от земли.

В схеме нет никаких нагрузочных резисторов, поэтому в статическом состоянии через КМОП-схему протекают только токи утечки через закрытые транзисторы, и энергопотребление очень низкое. При переключениях электрическая энергия тратится в основном на перезаряд емкостей затворов и проводников, так что потребляемая (и рассеиваемая) мощность пропорциональна частоте этих переключений (например, тактовой частоте процессора).

На рисунке конфигурации микросхемы 2И-НЕ показано, что в ней используются два двухзатворных полевых транзистора с разным типом проводимости канала. Верхний двухзатворный полевой транзистор формирует высокий уровень на выходе логического элемента, если любой из затворов имеет низкий уровень, а нижний двухзатворный полевой транзистор формирует высокий уровень на выходе логического элемента, если оба затвора имеют высокий уровень.

Следует отметить, что, поскольку переключение n-канальных и p-канальных транзисторов имеет конечное время, на короткое время оба типа транзисторов могут быть открыты и между цепями питания возникает импульсный сквозной ток. Это приводит к повышению энергопотребления.

Защита от статического электричества

Так как затворы МДП-транзисторов имеют большое входное сопротивление, электростатический разряд может привести к пробою затвора и выходу микросхемы из строя. Для защиты от статического электричества каждый вывод КМОП-микросхемы оснащают защитной схемой, в которую входят диоды с низким напряжением пробоя, соединяющие каждый вход с шинами питания.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector