Микросхемы серии к155 к561 к176 74 40 транзисторы

Структурная схема

Конденсатор С1 обеспечивает положительную обратную связь между выходом второго и входом первого инвертора необходимую для возбуждения генератора.

Резистор R1 обеспечивает необходимое смещение по постоянному току, а также позволяет осуществлять небольшую отрицательную обратную связь на частоте генератора.

В результате преобладания положительной обратной связи над отрицательной на выходе генератора получается напряжение прямоугольной формы.

Изменение частоты генератора в широких пределах производится подбором емкости СІ и сопротивления резистора R1. Генерируемая частота равна fген = 1/(С1 * R1). С понижением питания эта частота уменьшается. По аналогичной схеме собирается и НЧ генератор подбором соответствующим образом С1 и R1.

Рис. 1. Структурная схема генератора на логической микросхеме.

Описание работы одновибратора на логических элементах

Одновибратор состоит из двух логических элементов микросхемы К155ЛА3: первый из них применен в роли 2И-НЕ элемента, второй подключен как инвертор. Подача входного сигнала осуществляется посредством кнопки SA1. Кнопка в данной схеме применяется только в качестве имитации входного сигнала. В действующих же устройствах на данный вход обычно поступает сигнал с каких-либо узлов схемы.

Для наглядности работы одновибратора, к его выходу можно подключить светодиод через токоограничивающий резистор. Чтобы видеть свечение светодиода, нужно чтобы выходной импульс был достаточно продолжительный, поэтому выберем конденсатор емкостью 500 мкф.

Подадим питание и замерим стрелочным вольтметром напряжение на выводах логических элементов DD1.1 и DD1.2 микросхемы К155ЛА3. На выходе логического элемента DD1.1 микросхемы К155ЛА3 должен быть логический ноль (не более 0,4 вольта) и  единица (более 2,4 вольта) на его входе 2. Так же на выходе 6 логического элемента DD1.2 будет единица и соответственно единица на выводе 1  на DD1.1.

Подключив вольтметр к выводу 6 логического элемента DD1.2 , как уже было сказано до этого,  на нем лог. 1. Теперь нажмем кратковременно кнопку SA1. Стрелка вольтметра резко отойдет практически до нуля. Примерно через 1-2 секунды она опять стремительно примет исходное положение. По такому движению стрелки можно сделать вывод, что мы наблюдали сигнал низкого уровня.

Одновременно с этим процессом загорится и светодиод, подсказывая нам, что на выходе одновибратора появился одиночный импульс высокого уровня. Если параллельно конденсатору С1 подключить конденсатор такой же емкости, то мы заметим, что продолжительность импульса возросла вдвое. Так же изменяя сопротивление резистора R1 можно добиться изменения длительности импульса.

Подведем итог:  Чем выше емкость конденсатора C1 и сопротивление R1, тем продолжительнее выходной импульс вырабатываемый одновибратором на К155ЛА3.

В данной схеме одновибратора сопротивление R1 и емкость Cl представляют собой времязадающую RC цепь. При малых значениях C1 и R1 длительность импульса будет настолько короткой, что визуально обнаружить его с помощью вольтметра или светодиода не реально. В этом случае наличие импульса можно зафиксировать с помощью осциллографа или логического  пробника.

В  ждущем состоянии вывод 2 микросхемы К155ЛА3 никуда не подсоединен, поскольку контакты SA1 еще незамкнуты. По сути, на входе находится единица. Зачастую вход в таком случае соединяют с плюсом питания через сопротивление 1 кОм.

Из-за подключенного сопротивления R1, на входе логического элемента DD1.2 находится лог. 0, а на его выходе лог. 1. Поскольку на обоих выводах конденсатора лог. 0, он полностью разряжен.

В момент нажатия SA1, на вход 2 логического элемента DD1.1 поступает электрический сигнал  низкого уровня. Поэтому на выводе 3 логического элемента DD1.1 единица. Положительный фронт через C1 подается на вход DD1.2. Соответственно с выхода его логический 0 поступит на вход DD1.1 и он будет присутствовать там даже после отпускания кнопки.

Одновременно через резистор происходит заряд конденсатора. И по окончании заряда напряжение на резисторе упадет и это переведет выход элемента DD1.2 в лог. 1. Одновибратор вернется в исходное состояние — в ждущий режим.

Следует заметить, то входной сигнал (нажатие кнопки) должен быть меньше по продолжительности, чем выходной иначе выходных импульсов не будет.

К1ЛП332

   Интереснейший экземпляр!

   Во-первых, этой микросхемы нет практически ни в одном справочнике.
1ЛП331 есть, 1ЛП333 есть, а вторая пропущена!

Это были «половинки»; 1ЛП332 — половина 133ЛД1 (1ЛП331), один 4-входовый расширитель по ИЛИ.
Очень скоро производство их было прекращено, т.к. стало получаться достаточно нормальных, не половинок.
Память от них осталась в виде «дырок» в порядке номеров типов микросхем.

   В-третьих, корпус. Видны рудиментарные боковые выводы. Назначение
неизвестно, то ли пытались втиснуть дополнительные выводы, то ли для крепления к рамке при изготовлении.
Плюс к этому, очень острые грани корпуса, такого тоже не встречал более.

   Мало? Могу добавить и в-четвертых :))). Это (пока) самая ранняя микросхема из
этой серии у меня. Выпуск менее чем через год после окончания разработки…

Простой металлоискатель

Металлоискатель, схема которого приведена на рисунке, можно собрать всего за несколько минут. Он состоит из двух практически идентичных LC-генераторов, выполненных на элементах DD1.1-DD1.4, детектора по схеме удвоения выпрямленного напряжения на диодах VD1. VD2 и высокоомных (2 кОм) головных телефонов BF1 изменение тональности звучания которых и свидетельствует о наличии под катушкой-антенной металлического предмета.

Генератор, собранный на элементах DD1.1 и DD1.2, само возбуждается на частоте резонанса последовательного колебательного контура L1C1, настроенного на частоту 465 кГц (использованы элементы фильтра ПЧ супергетеродинного приемника). Частота второго генератора (DD1.3, DD1.4) определяется индуктивностью катушки-антенны 12 (30 витков провода ПЭЛ 0,4 на оправке диаметром 200 мм) и емкостью конденсатора переменной емкости С2. позволяющего перед поиском настроить металлоискатель на обнаружение предметов определенной массы.
Биения, возникшие в результате смешения колебаний обоих генераторов, детектируются диодами VD1, VD2. фильтруются конденсатором С5 и поступают на головные телефоны BF1.

Все устройство собрано на небольшой печатной плате, что позволяет при питании от плоской батареи для карманного фонаря сделать его очень компактным и удобным в обращении

Janeczek A Prosty wykrywacz melali. — Radioelektromk, 1984, № 9 стр. 5.

Примечание редакции. При повторении металлоискателя можно использовать микросхему К155ЛA3, любые высокочастотные германиевые диоды н КПЕ от радиоприемника «Альпинист».

Исследование работы мультивибратора на К155ЛА3

Для изучения выходных сигналов желательно использовать логический пробник или стрелочный вольтметр. При тех номиналах, которые указаны на схеме, частота импульсов составит около 30 раз в минуту или примерно 0,5 Гц.

Следовательно, стрелка вольтметра, подсоединенного, к примеру, к выходу DD1.2 К155ЛА3, будет двигаться от 0 и почти до 5 вольт. Если подсоединить вольтметр к выходу DD1.1 К155ЛА3 можно увидеть точно такую же картину. Поэтому данный вид мультивибратора назван симметричным.

Теперь если к каждому конденсатору параллельно подключить еще по одному такому же, то можно заметить, что частота колебаний стрелка вольтметра снизилась примерно в 2 раза. Если теперь заменить первоначальные конденсаторы конденсаторами по 200 мкф,  то сразу будет заметно увеличение частоты колебаний.

А что выйдет, если поменять емкость всего лишь одного конденсатора? К примеру, один конденсатор заменим на 100 мкф, а другой оставим как есть 500 мкф. Частота заметно возрастет, но еще плюс ко всему изменится отношение паузы и импульсов. Уменьшив емкость до 1…5 мкф, схема будет вырабатывать звуковую частоту в районе 500…1000 Гц.

Если один из постоянных резисторов убрать и на его место поставить переменный, то изменяя его сопротивление можно в небольшом диапазоне изменять частоту работы мультивибратора.

Но, бывает, что мультивибратор функционирует нестабильно или вообще не запускается. А все дело в том, что эмиттерный вход микросхем К155ЛА3 достаточно зависим от сопротивления резисторов, находящихся в его цепи. Эта специфика эмиттерного входа микросхемы К155ЛА3 состоит в следующем. Резистор на входе включен как составная часть одного из плеч мультивибратора. Из-за тока эмиттера на данном резисторе появляется напряжение, которое запирает транзистор.

Если же сопротивление данного резистора будет в диапазоне 2…2,5 кОм, то падение напряжения на нем окажется значительным, и это приведет к тому, что транзистор элементарно перестанет обрабатывать входной сигнал. И наоборот, если установить сопротивление в диапазоне 500…700 Ом, то транзистор окажется постоянно в открытом состоянии.

В связи с этим, сопротивление данных резисторов следует подбирать в диапазоне  800…2200 Ом. Только так возможно достичь стабильной работы мультивибратора на К155ЛА3, построенный по данной схеме. Так же на работу данного мультивибратора действуют такие моменты, как нестабильность питания, температура. От того мультивибратор на К155ЛА3, построенный по такой схеме фактически используется крайне редко.

(К)1ЛБ551, 1ЛБ551А, К155ЛА1

   Вполне обычные микросхемы (два элемента 4И-НЕ); паспорт
на них (от микросхемы производства завода «Искра»,
г.Ульяновск). Здесь они лишь по причине своего возраста…

   Самая ранняя дата выпуска микросхем этой серии, известная мне на сегодня — октябрь 1969 года.
Интересно, что логотип НИИМЭ здесь отформован в
пластмассе корпуса, а не нанесен краской.

   Эти выпуски еще могли разбраковываться по быстродействию/нагрузочной способности,
с добавлением дополнительной буквы в названии.

а вот эта микросхема интересна тем, что на лицевой
стороне у неё обозначение по новой системе, а на днище — еще по старой :)))

2.4. Требования к устойчивости при климатических воздействиях

2.4.1. Микросхемы должны быть устойчивыми к
воздействию климатических факторов:

сухое тепло:

верхнее значение 343 К (70 °С);

холод:

нижнее значение 263 К (-10 °С);

смена температур от 263 до 343 К (от -10 до +70 °С);

влажное тепло (постоянный режим с относительной влажностью
без конденсации влаги)  % при 313 ± 2 К (40 ±
2 °С)

Таблица 2

Наименование параметра и режим измерения

Буквенное обозначение параметра

Норма

Температура, К (°С)

не менее

не более

Выходное напряжение низкого уровня, В:

От 263 до 343 (от -10 до +70)

К155ЛА2

К155ЛА3

UСС= 5В ± 5 %;

UIL = 0,8,В (К155ТМ2);

UOL

0,4

К156ТМ2

UIH = 2,0 В;

UOL
= 16 мА

Выходное напряжение высокого уровня, В:

К155ЛА2

К155ЛА3

К155ТМ2

UСС = 5 В ± 5 %;

UIL = 0,8 В;

UI = 4,75 В;

Iон= —0,4 мА;

UIH
= 2,0 В (K155TM2)

UOH

2,4

Ток потребления при низком уровне на выходе,
мА:

К155ЛА2

Ucc= 5В ± 5 %

UCCL

6

К155ЛА3

UI = 5 В

22

Ток потребления при высоком уровне на выходе,
мА:

К155ЛА2

UCC
= 5 B ± 5 %;

Icch

2

К155ЛА3

UI= 0 В

8

Ток потребления, мА:

От 263 до 343 (от -10 до +70)

К155ТМ2

Ucc = 5 B ± 5 %

UI= 0 В; 5 В

IСС

30

Входной ток низкого уровня, мА:

IIL

К155ЛА2

К155ЛА3

UCC
= 5 B ± 5 %;

UIH= 4,5В;

UIL
= 0,4 В;

UСс = 5 В ± 5 %;

-1,6

-1,6

К155ТМ2

UIH
= 4,5 В;

UIL1 = 0 В;

UIL2 = 0,4 В

-1,6 (по входам 10, 12, 2, 4)

-3,2 (по входам 13, 11, 1, 3)

Входной ток высокого уровня, мА:

К155ЛА2

К155ЛA3

UCC
= 5 В ± 5 %;

UIH= 2,4В;

UIL= 0 B

IIH

0,04

Входной ток высокого уровня, мА:

IIH

К155ТМ2

Uсс=
5 В ± 5 %;

UIH1 = 4,5 В;

UIH2 = 2,4 В;

UIL
= 0 В

0,04 (по входам 12, 2) 0,08 (по входам 10, 11,
4, 3)

0,12 (по входам 13, 1)

Время задержки распространения сигнала при
включении, нc

От 263 до 343 (от -10 до +70)

К155ЛА2

Uсс = 5 В ± 5 %;

tPHL

15

К155ЛА3

СH = 15 пФ ± 15 %;

15

К155ТМ2

RH = 390 Ом ± 15
%;

UIH= 2,4 B

40

Время задержки распространения сигнала при
выключении, нc

К155ЛА2

UСС = 5 В ± 5 %;

tPLH

22

К155ЛА3

СH =15
пФ ± 15 %;

22

К155ТМ2

RH = 390 Ом ± 5
%;

25

UIH
= 2,4 В

Примечание.
Знак «-» перед значениями норм токов IIL,IOS или токов, задаваемых в виде режимных
при измерении параметров UD,UОН(см. табл. , , — ), означает направление тока, вытекающего из вывода
микросхемы.

2.1. Требования к конструкции

2.1.1. Размеры микросхемы должны
соответствовать СТ СЭВ …* и черт. .

*
См. информационное приложение .

Корпус. Основные
размеры

.А
длина вывода, обеспечивающая гарантийный зазор между плоскостью основания
микросхемы и установочной плоскостью.

.
Нумерация выводов показана условно.

.
Корпус с теплорастекателем.

.
Зона ключа — место для выполнения знака ключа.

2.1.2. Поверхность микросхемы не должна иметь
трещин, раковин и других неровностей, нарушающих габаритные размеры, приводящих
к потере работоспособности и ухудшающих надежность микросхемы. Покрытие выводов
не должно иметь пузырьков и следов коррозии, приводящих к ухудшению
обслуживания выводов.

2.1.3. Масса микросхем не должна превышать 1
г.

2.1.4. Микросхемы не имеют внутренних
полостей. Требования к герметичности не предъявляются.

2.1.5. Выводы микросхем должны быть
механически прочными и выдерживать без повреждений воздействия механических
факторов, возникающих при монтаже аппаратуры.

2.1.6. Выводы микросхем должны обеспечивать
возможность их пайки при следующих условиях:

минимальной температуре 508 ± 5 К (235 ± 5 °С);

максимальной температуре 543 ± 10 К (270 ± 10 °С);

времени пайки от 2 до 3 с.

2.1.7. Микросхемы должны выдерживать
воздействие тепла, возникающего при следующих условиях:

температуре пайки 533 ± 5 К (260 ± 5 °С) при времени лайки
не более 8 с;

расстоянии от плоскости основания корпуса до места пайки (по
длине выводов) не менее 1,5 мм.

2.1.8. Назначение выводов указано на
электрических схемах микросхем*.

*
См информационные приложения — .

ЭА133… ЭКА133…

Экспортная. Паспорт на ЭКА133ЛА8,
к примеру. Эх, кто-то же еще применял 133ю серию в те годы…

1. Справочник по полупроводниковым диодам, транзисторам и интегральным схемам. Под общ. ред. Н. Н. Горюнова. Изд. 3-е, переработ. и доп. М., «Энергия», 1972.
2. . Интегральные логические схемы в цифровых системах, ч.1, Интегральные микросхемы. И.П. Барбаш, А.А. Ларин, Г.Н. Тимонькин. Министерство Обороны, 1973.
3. Майоров С. А. и др. Электронные вычислительные машины (справочник по конструированию). Под ред. С. А. Майорова. —
М., «Сов. радио», 1975г.
4. Пляц О.М. Справочник по электровакуумным, полупроводниковым приборам и интегральным
схемам. — Минск: Вышэйшая школа, 1976
5. Молчанов А.П., Занадворов П.Н. Курс электротехники и радиотехники, изд. 3-е перераб., Главная редакция физико-математической литературы изд-ва Наука, 1976.
6. Каталог интегральных микросхем. Часть 1 (цифровые).
Центральное бюро применения. 1976.
7. Справочник по интегральным микросхемам. Под общ. ред. Б.В.Тарабрина. М., «Энергия», 1977
8. Справочник по полупроводниковым диодам, транзисторам и интегральным схемам. Под общ.
ред. Н. Н. Горюнова. Изд. 4-е, перераб. и доп. М., «Энергия», 1977.
9. Лавриненко В.Ю. Справочник по полупроводниковым приборам. 9-е изд., перераб. К.: Технiка, 1980.
10. Справочник по интегральным микросхемам/ Б.В. Тарабрин, С.В. Якубовский, Н.А. Барканов и др.;
Под ред. Б.В. Тарабрина. — 2-е изд., перераб. и доп. — М.: Энергия, 1981
11. Каталог интегральных микросхем. Том 1. Центральное конструкторское бюро. 1986.
12. Каталог. Цифровые и аналоговые интегральные микросхемы. Часть 2. Условные графические обозначения,
назначения выводов и габаритные чертежи корпусов. — ГУП Центральное конструкторскою бюро «Дейтон», 1998.
13. Нефедов А.В. Интегральные микросхемы и их зарубежные аналоги: Справочник. Т. 1. — М.:Радиософт, 2001
14. Динамика радиоэлектроники/ Под общ. ред. Ю.И. Борисова — М.: Техносфера, 2007.

К1ЛБ55хИ

Изредка встречаются микросхемы с буквой «И» в конце
обозначения. Их выпускала запорожская «Гамма» (в то время Запорожский завод полупроводниковых
приборов); это единственные встреченные
мной микросхемы этого типа (..ЛБ.. или ..ЛА..) 155ой серии этого завода.
Это довольно необычные микросхемы, на них были выпущены даже отдельные ТУ.
155ая серия с индексом «И» выполнена по технологии КСДИ (с окисной изоляцией),
в отличии от обратно-смещенного перехода обычной 155 серии. Основной ТТЛ продукцией
«Гаммы» в те годы была как раз «окисная»
106 серия и, вероятно, какое-то краткое время
по единому с ней технологическому процессу выпускали и 155ую.
Кристалл содержит избыточное количество элементов для снижения затрат на производство.

(фото Сергея Брылева)

(К)1ЛБ331(Б)

Два логических элемента 4И-НЕ. Первые
выпуски назывались ,
а в дальнейшем она была переименована в 133ЛА1.

Справочный листок и
заводские паспорта, на 1ЛБ331
и К1ЛБ331.

Что касается буквы «Б» — то, как пишет Погорилый «…некоторое
время 133 серия выпускалась с буквенными индексами А и Б (1ЛБ333А и 1ЛБ333Б, например). У «А»
было быстродействие больше, у «Б» несколько меньше.

Микросхемы с пониженной нагрузочной способностью и пониженным быстродействием
(25 и 50 нс вместо 15 и 22), т.е. «полубрак по параметрам», выпускала и фирма TI в начальный
период производства серии 54/74. Так что это обычная ситуация на этапе освоения
производства, пока технология еще не отработана».

Судя по фото, в них могли стоять разные кристаллы! По крайней мере,
если смотреть на расположение контактных площадок на интеграловских кристаллах:

образец 1972 года:

образец 1976 года:

КМ155ИД8А, КМ155ИД9, К155ИД9

Без сомнений, эта пара (в керамическом корпусе) держит с большим
отрывом первое место в номинации «Самая красивая микросхема серии»

Просто какое-то
волнение в душе, когда держишь их в руке, это произведение искусства
и не только лишь инженерного.
Причём, обратите внимание, корпус весьма архаичен, явный привет из 70-х годов.
Он называется «Тур» и был разработан в НИИТТ в 1970-72 гг.
Форма ног, крышка корпуса — всё это отголоски древних времён, когда DIP
был ещё молод… Причем, насколько я знаю, это вообще чуть ли не единственные наши микросхемы в таком корпусе!
Вспоминается ещё разве что К507РМ1.
Опять же, золочение для микросхем невоенного применения (не отбраковки от «войны», а изначально гражданских)
вещь исключительная.
Впрочем, есть и вариант в обычном скучном пластике

Немного подробностей. Обе эти микросхемы представляют собой
дешифраторы для управления матрицей из светодиодов. 155ИД8 работает
на матрицу 7х5 точек, с возможностью индицировать цифры от 0 до 9, знаки
«-» и переполнение «Е». 155ИД9 управляет матрицей 7х4 точек;
справочный листок на неё.

Производитель, а, полагаю, и разработчик —
НИИ «Мион», г.Тбилиси (Грузия).
Как нередко было у «Миона», микросхемы эти не имеют зарубежного аналога, а представляют
собой чисто отечественные разработки.

Не могу отказать себе в удовольствии отснять их во всех
возможных ракурсах…

2 D-триггера К155ТМ2

Рис. 26.1 К155ТM2

Микросхема содержит два независимых D-триггера, имеющих общую цепь питания. У каждого триггера есть входы D, S# и R#, а также комплементарные выходы Q и Q#. Входы S# и R# — асинхронные, потому что они работают (сбрасывают состояния триггера) независимо от сигнала на тактовом входе; активный уровень для них – низкий. Сигнал от входа D передается на выходы Q и Q# по положительному перепаду импульса на тактовом входе С (Н → В).


Рис. 26.2 К155ТМ2 Функциональная схема

Чтобы триггер переключался правильно, уровень на входе D следует зафиксировать заранее, перед приходом тактового сигнала. Защитный интервал должен превышать время задержки распространения сигнала в триггере. Если на входы S# и R# триггеров одновременно подаются напряжения низкого уровня, состояние выходов Q и Q# окажется неопределенным. Загрузить в триггер входные уровни В или Н ( то есть 1 или 0) можно, если на входы S# и R# подать напряжения высокого уровня.

Асинхронная установка нужного сочетания уровней на выходах получится, когда на входы S# и R# поданы взаимопротивоположные логические сигналы. В это время входы C и D отключены.

Таблица 12
Режим работы счетчика S# R# C D Q Q#
Асинхронная установка H B * * B H
Асинхронный сброс B H * * H B
Неопределенность H H * * B B
Загрузка 1 (установка) B B 0→1 B B H
Загрузка 0 (Сброс) B B 1→0 H H B

Настройка

Настройку генератора при отсутствии ГСС производят по радиовещательному радиоприемнику, имеющему диапазоны волн: КВ, СВ и ДВ. С этой целью устанавливают приемник на обзорный КВ диапазон.

Установив переключатель SA1 генератора в положение КВ, подают на антенный вход приемника сигнал. Вращая ручку настройки приемника пытаются найти сигнал генератора.

На шкале приемника будет прослушиваться несколько сигналов, выбирают наиболее громкий. Это будет первая гармоника. Подбирая конденсатор С1, добиваются приема сигнала генератора на волне 30 м, что соответствует частоте 10 МГц.

Затем устанавливают переключатель SA1 генератора в положение СВ, а приемник переключают на средневолновый диапазон. Подбирая конденсатор С2, добиваются прослушивания сигнала генератора на метке шкалы приемника соответствующей волне 180 м.

Аналогично производят настройку генератора в диапазоне ДВ. Изменяют емкость конденсатора C3 таким образом, чтобы сигнал генератора прослушивался на конце средневолнового диапазона приемника, отметка 600 м.

Аналогичным способом производится градуировка шкалы переменного резистора R2. Для градуировки генератора, а также его проверки, должны быть включены оба выключатели SA2 и SA3.

Литература: В.М. Пестриков. — Энциклопедия радиолюбителя.

Детали

Генератор ВЧ собран на элементах DD1.1…DD1.3. В зависимости от подключаемых конденсаторов С1…C3 генератор выдает колебания соответствующие КВ, СВ или ДВ.

Переменным резистором R2 производится плавное изменение частоты высокочастотных колебаний в любом поддиапазоне выбранных частот. На входы инвертора 12 и 13 элемента DD1.4 подаются колебания ВЧ и НЧ. В результате чего на выходе 11 элемента DD1.4 получаются модулированные высокочастотные колебания.

Плавное регулирование уровня промодулированных высокочастотных колебаний производится переменным резистором R6. С помощью делителя R7…R9 выходной сигнал можно изменить скачкообразно в 10 раз и 100 раз. Питается генератор от стабилизированного источника напряжением 5 В, при подключении которого загорается светодиод VD2 зеленого свечения.

В универсальном генераторе используются постоянные резисторы типа МЛТ-0,125, переменные — СП-1. Конденсаторы С1…C3 — КСО, С4 и С6 — К53-1, С5 — МБМ. Вместо указанной серии микросхем на схеме можно использовать микросхемы серии К133. Все детали генератора монтируют на печатной плате. Конструктивно генератор выполняется исходя из вкусов радиолюбителя.

Блок ускоренного переноса для АЛУ К155ИП4

Рис. 12.1 К155ИП4

Схема К155ИП4 представляет собой быстродействующий блок ускоренного переноса, предназначенный для формирования сквозного переноса через четыре каскада при выполнении операции сложения в параллельном сумматоре и используется в сочетании с АЛУ К155ИП3.

Блок содержит четыре входа Р0-Р3, на которые подаются сигналы распространения переноса G0-G3 для сигналов образования переноса, вход переноса из предыдущего разряда С, используемый при каскадировании схем, а также выходы С1, С2, С3 для формирования переносов соответственно с первого, второго и третьего разрядов. С целью расширения логических возможностей схемы сигнал переноса четвертого разряда делится на сигнал образования группового переноса G и сигнал распространения переноса P.

С помощью данной микросхемы можно организовать сквозной перенос между между группой в пределах 16 разрядов, а с применением каскадирования — сквозной перенос в 32 и более разрядных устройствах, построенных по принципу последовательного переноса.

Если ускоренный перенос осуществляется более чем на 4 двоичных разряда, выходы G и P группового переноса АЛУ соединяются со входами блока К155ИП4 на следующем уровне ускоренного переноса.

Рис. 12.2 К155ИП4 Функциональная схема

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector