Регулируемый преобразователь напряжения (dc-dc конвертер) mt3608
Содержание:
- На XL6009
- Повышающий преобразователь напряжения на MT3608 и его применение
- На XL4016
- Мощный DC-DC преобразователь
- Примеры повышателей
- Повышающие преобразователи напряжения
- Глава 2 — Ограничения проектирования boost преобразователя
- DC-DC преобразователи
- Мощные преобразователи
- Настройка преобразователя.
- Порядок намотки импульсного трансформатора.
- Импульсные преобразователи и стабилизаторы
- Применение
- Импульсно-резонансный преобразователь
- Доработка мультиметра.
- Универсальный повышающий преобразователь MT3608
На XL6009
Стабилизатор преобразователь XL6009
Представитель современных эффективных преобразователей, как и устаревшие модели на LM2596 выпускается с нескольких вариантах, от миниатюрных до моделей с индикаторами напряжения.
Пример эффективности:
92% при преобразовании 12V в 19V, нагрузка 2А.
В даташите сразу указана схема использования в качестве питания ноутбука в автомобиле от 10V до 30V. Так же на XL6009 легко реализовать двуполярное питания на +24 и -24В. Как у большинства преобразователей КПД снижается, чем выше разница напряжений и больше Ампер.
Типовая схема включения XL6009
Повышающий преобразователь напряжения на MT3608 и его применение
27.09.17 12:00
Повышающие преобразователи напряжения позволяют питать нагрузку от имеющегося источника питания, у которого напряжение ниже необходимого. Об одном из таких преобразователях, построенном на XL6009, я рассказывал ранее. В данной статье я расскажу про подобный преобразователь на микросхеме MT3608.
Несколько экземпляров я купил на Aliexpress за $0.44
Вес составил 4,8 грамма. Плата имеет габариты 37 х 17 х 6 мм.
Основой преобразователя является микросхема MT3608 в корпусе SOT23-6
Рабочие характеристики преобразователя по даташиту:К контактам «VIN+» и «VIN-» подводим входное напряжение, которое может быть от 2 до 24 ВС контактов «VOUT+» и «VOUT-» снимаем выходное напряжение, которое можно получить в пределах до 28 ВЧастота переключения: 1,2 МГцМаксимальный выходной ток: до 2АРабочая температура: -40°C до +85°C
Заявленное по паспорту КПД до 93%, но его показатели зависят от тока потребления. На графике пример при входящем напряжении 5В, исходящем 12В.
Принципиальная схема.Выходное напряжение устанавливается с помощью резистора R1.
Крутить переменный резистор следует против часовой стрелки, для увеличения выходного напряжения. По формуле резистор R1 можно рассчитать так:
VREF – напряжение на 3-й ножке микросхемы (FB), составляет 0,6 В
Катушку можно использовать с индуктивностью от 4.7 до 22μH, которая должна иметь низкие потери в сердечнике на частоте 1,2 МГц. Входные и выходные керамические конденсаторы рекомендуется использовать ёмкостью 22 μF. Для лучшей фильтрации напряжения, конденсаторы должны быть с низким ESR. Отлично для этого подходят конденсаторы типов X5R и X7R.
В примере буду подключать преобразователь от одного аккумулятора 18650 (3,7В).
Максимальное выходное напряжение, которое удалось получить с входящим 3,7В, составило 27,6В.
Минимальное выходное напряжение составило 3,88В.В процессе замеров, случайно, кратковременно были замкнуты на выходе «+» и «-». Преобразователь не пострадал, хотя очень сильно нагрелась катушка индуктивности.
Выставляю 12В на выходе и подключаю 12-вольтовую светодиодную лампу, с цоколем G4 на 24 smd светодиода.
Лампа светит ярко, дроссель и микросхема не греются. На подобном наборчике можно мастерить не дорогие походные фонарики или аварийное освещение. Так же можно конструировать различные подсветки, с применением светодиодных лент, с допустимыми параметрами.По отзывам на других сайтах, рассказывают, что в заводском исполнении, плата разведена не лучшим образом, поэтому на выходе преобразователя имеются пульсации. Для питания различных светодиодных лампочек это не критично, но если вам нужно уменьшить пульсации, можно дополнительно добавить керамический конденсатор, в пределах 10-22 мкФ, прямо на выходе.
На XL4016
Этот преобразователь имеет такую особенность, что может повышать только до 50% от входного количества вольт. Если подключить 12В, то максимальное увеличение будет 18В. В описании было указано, что его можно применять для ноутбуков, которые питаются максимум от 19V. Но его главное предназначение оказалось работа с ноутбуками от автомобильного аккумулятора. Наверное отграничение в 50% можно убрать, изменив резисторы, которые задают этот режим. Вольты на выходе напрямую зависят от количества входящих.
Отвод тепла сделан гораздо лучше, радиаторы поставлены правильно. Только вместо термопасты теплопроводящая прокладка, чтобы избежать электрического контакта с радиатором. На входе конденсатор 470мФ 50V, на другом конце 470мФ на 35V.
Мощный DC-DC преобразователь
Сегодня рассмотрим очередной DC-DC преобразователь напряжения который позволит заряжать или питать ноутбук от автомобильной бортовой сети 12 вольт. Схем похожих преобразователей в сети очень много, мы рассмотрим на мой взгляд один из лучших вариантов. Ещё инверторы такого планы часто применяются для питания мощных светодиодов от пониженного источника поэтому некоторые образцы имеют функцию ограничения тока.
Зачем делать то, что можно купить, ещё и за несколько долларов, такие вопросы задают многие люди…, отвечу просто, во-первых, собрать своими руками гораздо быстрее, чем ждать пару месяцев посылку из Китая и, во-вторых ничто не сравнится с той радостью, которую приносит работа конструкции которою ты создал собственными руками. Плюс ко всему наша конструкция будет надёжная.
Давайте рассмотрим схему и принцип её работы.
Это однотактный, повышающий стабилизатор напряжения с защитой от коротких замыканий, в просто народи — Бустер. Принцип работы схож с обратно — ходовым преобразователем, но у последнего дроссель состоит минимум из двух обмоток и между ними имеется гальваническая развязка.
Основой схемы является популярнейший однотактный ШИМ-контроллер из семейства UC38, в данном случае это UC3843. На вход схемы подаем напряжение, скажем 12 Вольт, а на выходе получаем 19, которые необходимо для зарядки почти любого ноутбука.
Вообще диапазон входных и выходных напряжений для этой схемы довольно широк, вращением подстроечного многооборотного резистора R8 с лёгкостью можно получить иные напряжения на выходе. Я выставил чуть меньше 18, так как данный преобразователь мне нужен для иных целей.
Микросхема генерирует прямоугольные импульсы с частотой около 120-125 килогерц, этот сигнал поступает на затвор ключа и тот срабатывает. Когда открыт транзистор в дросселе накапливается некоторая энергия, после закрытия ключа дроссель отдаёт накопленную энергию, это явление называют самоиндукцией, которая свойственна индуктивным нагрузкам.
Важно заметить, что напряжение самоиндукции может быть в разы, а то и в десятки раз больше напряжения питания, всё зависит от индуктивности конкретного дросселя. На выходе схемы установлен однополупериодный выпрямитель для выпрямления всплесков самоиндукции в постоянный ток , который накапливается в выходных конденсаторах
Питание нагрузки осуществляется запасенной в конденсаторах энергией, такой инвертор очень экономичен благодаря ШИМ управлению, потребление холостого хода всего 15-20 миллиампер.
Используя осциллограф мы можем увидеть, как меняется скважность импульсов на затворе полевого транзистора в зависимости от выходной нагрузки, чем больше выходная мощность, тем больше длиться рабочий цикл транзистора, то есть в дроссель поступает больше энергии, а следовательно больше и энергия самоиндукции.
Теперь о конструкции… Микросхема — ШИМ установлена на панельку для без паечного монтажа, если собираетесь использовать такой преобразователь в автомобиле, то советую микросхему запаять непосредственно на плату, так как в машине всегда есть вибрация.
Полевой транзистор… Тут большой выбор, использовать можно ключи с током от 20 ампер напряжением не менее 50 вольт. Я просто воткнул мой любимый IRFZ44, которого с головой хватит.
Кстати о мощности…, В принципе схема может отдать 150 вт без проблем, но естественно для этого нужен более мощный транзистор скажем irf3205 и соответствующий дроссель, в моём варианте схема будет под нагрузкой не более 50 Ватт, хотя с таким раскладом компонентов 100 Ватт снять можно.
Далее по счёту идёт накопительный дроссель, его индуктивность 40 мкГн, ничего не мотал, просто взял один из дросселей выходного фильтра компьютерного блока питания. Диаметр провода 0,9 мм. Количество витков 25. В принципе он особо не критичен, индуктивность может отличаться, размеры кольца и количество витков тоже.
Выходной выпрямитель — это сдвоенный Диод шоттки, подойдут сборки с током от 10 ампер с обратным напряжением не менее 40-45 Вольт.
Схема имеет защиту от коротких замыканий, она построена на базе датчика тока в лице низкоомного резистора подключённого в цепь истока полевого ключа, в моём случае это 2-х ваттный резистор сопротивлением 0,1 Ом.
После окончательной сборки транзистор и выпрямитель устанавливают на общий теплоотвод не забываем и про изоляцию между ними. Печатная плата довольно компактная, монтаж плотный.
Печатную плату в формате lay. можно скачать здесь.
Автор; АКА Касьян.
Примеры повышателей
XL4016
Рассмотрим 4 модели, которые у меня есть в наличии. Тратить время на фото не стал, взял и продавцов.
Характеристики.
Tusotek | XL4016 | Драйвер | MT3608 | |
Входное, В | 6 – 35В | 6 – 32В | 5 – 32В | 2-24V |
Ток на входе | до 10А | до 10А | — | — |
Выход, В | 6 – 55В | 6 – 32В | 6 – 60В | до 28В |
Ток на выходе | 5А, макс 7А | 5А, макс 8А | макс 2А | 1А, макс 2А |
Цена | 260руб | 250руб | 270руб | 55руб |
У меня большой опыт работы с китайскими товарами, большинство из них сразу имеют недостатки. Перед эксплуатацией их осматриваю и дорабатываю для увеличения надежности всей конструкции. В основном это проблемы сборки, которые возникают при быстрой сборке изделий. Дорабатываю светодиодные прожекторы, лампы для дома, автомобильные лампы ближнего и дальнего света, контроллеры для управления дневными ходовыми огнями ДХО. Рекомендую это делать всем, за минимум потраченного времени срок службы можно увеличить вдвое.
Реальная мощность зависит от режима, в спецификациях указывают максимальную. Характеристики конечно у каждого производителя будут отличаться, они ставят разные диоды, дроссель мотают проводом разной толщины.
Повышающие преобразователи напряжения
Мой лабораторный блок питания работает от блока ноутбука на 19V 90W, но этого не хватает для проверки последовательно подключенных светодиодов. Последовательная LED цепочка требует от 30В до 50В. Покупать готовый блок на 50-60 Вольт и 150W оказалось дороговато, около 2000 руб. Поэтому заказал первый повышающий стабилизатор за 500 руб. с повышением до 50В. После проверки оказалось, что он максимум до 32В, потому что на входе и выходе стоят конденсаторы на 35V. Убедительно написал продавцу своё возмущение, и через пару дней мне вернули денежку.
Повышатель Tusotek
Заказал второй до 55V под брендом Tusotek за 280руб, повышатель оказался отличный. С 12В легко повышает до 60V, выше крутить построечный резистор не стал, вдруг сгорит. Радиатор приклеен на теплопроводящий клей, поэтому маркировку микросхемы посмотреть не удалось. Охлаждение сделано немного неправильно, теплоотводная площадка диода Шотки и контроллера прикреплена к плате, а не к радиатору.
Глава 2 — Ограничения проектирования boost преобразователя
Выходное напряжение не должно превышать входное более, чем в 3…4 раза.
Тут наверняка набегут специалисты и расскажут, как они в часах на ИН-12 с помощью MC34063 повышали напряжение boost-ом из +5В аж в целых +180В! Это конечно замечательно, но давайте прикинем коэффициент заполнения для данного случая, чтобы поднять напряжение из 5В в 180В надо заставить работать преобразователь при коэффициенте около 0,972(!). Думаю не надо рассказывать, что это плохая идея, что на большой частоте переходные процесс при коммутации транзисторов будут иметь сопоставимую длительность, а может даже и большую.
Так же при таком коэффициенте заполнения получается, что транзистор открыт почти всегда, а значит через него протекает ток и мы получаем максимально возможное значение статических потерь, а значит и низкий КПД.
К чему это собственно ведет… на малой мощности (тот самый случай с mc34063) гарантирована нестабильная работа, низкая надежность, пульсации тока и низкий КПД в совокупности с повышенным нагревом силовых элементов
На большой мощности — бабах.
Для примера обратите внимание на PFC, все они работают при соотношение максимум 1:4, а именно тот самый универсальный вход 85…265VAC или же стабилизатор напряжения с их 90…310VAC. Так же в качестве примера можно рассмотреть сетевые инверторы с MPPT, там при выходе 800В на вход подается 200…600VDC, то есть соотношение 1:4;
Напряжение на транзисторе
Данное ограничение тесно связано с тезисом о соотношение выше и вот почему… Транзистор VT1 должен иметь напряжение сток-исток равное минимум выходному напряжению, а в реальных устройствах иметь еще и запас хотя бы 20% на пульсации. Высоковольтные ключи имеют большое сопротивление канала, а при большом соотношении напряжений и ток на входе будет очень большим, что приведет к большим потерям на транзисторе;
Напряжение диода. Если внимательно посмотреть на схему преобразователя, то станет понятно, что к диоду VD1 прикладывается напряжение равное выходному, то есть если у вас выход 400В, то и диод должен выдерживать эти 400В.
В связи с этим у данной топологии есть интересный «плюс», т.к. диод высоковольтный и в нем протекает ток в разы ниже, чем ток через транзистор, то во многих решениях применение диода Шоттки или SiC-диода позволит получить меньшие потери, чем применение синхронной топологии (полумост на транзисторах). Это касается решений с выходом от 200В и более, а синхронный вариант топологии в основном актуален лишь до напряжения около 100В;
Напряжение конденсаторов. Вроде очевидный момент, но на всякий случай уточню — выходной конденсатор должен выдерживать напряжение равное выходному, что во многих задачах, где применяют boost может составлять и 400, и 800 и даже 1500VDC.
DC-DC преобразователи
Тип |
Краткое описание |
Рабочая частота, кГц |
I вых. — ток LED, А |
U вых., В | U вх., В | Рабочая t, °С | Корпус |
---|---|---|---|---|---|---|---|
34063CM3K | Повышающий / понижающий / инвертирующий DC-DC конвертер | 180 (макс) | 0,75 | 40 | 3.0-40 | -40 +85 | DIP-8, SOP-8 |
34063M4K | Повышающий / понижающий / инвертирующий DC-DC конвертер | 100 (макс.) | 1.1 | 40 | 3.0-40 | -40 +85 | DIP-8, SOP-8 |
HV34063K | DC-DC конвертер | 100 (макс.) | 1.1 | 60 | 5.0-60 | -40 +85 | |
CS5171 | Повышающий DC-DC конвертер | 280 | 1.5 | 40 | 2.7-30 | -40 +125 | SOP-8 |
2S76K | Понижающий DC-DC конвертер с усилителем | 52 | 2.0 | 5.0 регулируемое | 40 | -40 +125 | ESOP-8 |
2596M3K | Импульсный понижающий DC-DC конвертер | 150 | 2.0 | 3.3; 5.0; 12; 15; регулируемое. | 40 | -40 +125 | TO-220, TO-263, SO-8 |
2HV76K | Импульсный понижающий DC-DC конвертер | 52 | 2.0 | 3.3; 5.0; 12; 15; регулируемое. | 60 | -40 +125 | TO-220, TO-263, SO-8 |
HV96LK | Понижающий преобразователь напряжения | 150 | 0.2 | 5-48 | 80 | -40 +125 | ESOP-8, SOP-8 |
4573K | Понижающий преобразователь напряжения | 300 | 3.0 |
3.3; 5.0; 12; 15; регулируемое |
40 | -40 +125 | ESOP-8, SOP-8 |
5001K | Понижающий преобразователь напряжения | 70…500 | 1…5 | регулируемое | 40 | -40 +85 | SOP-8 |
2596M4K | Импульсный понижающий DC-DC конвертер | 150 | 3.0 | 3.3; 5.0; 12; 15; регулируемое. | 40 | -40 +125 | TO-220, TO-263 |
2596M5K | Импульсный понижающий DC-DC конвертер | 150 | 3.0 | 3.3; 5.0; 12; 15; регулируемое. | 40 | -40 +125 | TO-220, TO-263 |
LM2576M1K | Понижающий преобразователь напряжения | 52 | 3.0 |
3.3; 5.0; 12; 15; регулируемое. |
40 | -40 +125 | TO-220, TO-263, SO-8 |
2576M3K | Понижающий преобразователь напряжения | 52 | 3.0 |
3.3; 5.0; 12; 15; регулируемое. |
40 | -40 +125 | TO-220, TO-263, SO-8 |
4573K | Понижающий преобразователь напряжения | 300 | 3.0 |
3.3; 5.0; 12; 15; регулируемое. |
40 | -40 +125 | TO-220, TO-263, TO-252 |
2S76M1K | Понижающий преобразователь напряжения | 52 | 2.0 |
3.3; 5.0; 12; 15; регулируемое. |
40 | -40 +125 | TO-220, TO-263, SO-8 |
3HV76K | Понижающий преобразователь напряжения | 52 | 3.0 |
3.3; 5.0; 12; 15; регулируемое |
60 | -40 +125 | TO-220, TO-263 |
3TL76K | LED / DC-DC понижающий конвертер | 52 | 3.0 | регулируемое | 60 | -40 +125 | TO-220, TO-263, SO-8 |
HV96LK | Преобразователь напряжения DC-DC | 150 | 0.2 |
5.0; 12; регулируемое |
4.5-100 | -40 +125 | SO-8EP |
3HV96K | Понижающий регулятор напряжения | 150 | 3.0 |
3.3; 5.0; 12; регулируемое. |
60 | -40 +125 | TO-220, TO-263, SO-8 |
1501AK/BK | Импульсный понижающий DC-DC конвертер | 150/300 | 5.0 |
3.3; 5.0; 12; регулируемое. |
40 | -40 +125 | TO-220, TO-263 |
ИС управления питанием производства Микрон доступны как в виде кристаллов на пластинах, так и в корпусированном исполнении. Минимальная партия заказа корпусированных изделий: от 100 000 штук. |
Мощные преобразователи
Для особых случаев бывают нужны мощные DC-DC повышающие преобразователи на 10-20А и до 120В. Покажу несколько популярных и доступных моделей. Они в основном не имеют маркировки или продавец её скрывает, чтобы не покупали в другом месте. Лично не тестировал, по вольтажу они сосуществуют по обещанным характеристикам. А вот ампер будет немного поменьше. Хотя изделия такой ценовой категории у меня всегда держат заявленную нагрузку, покупал похожие аппараты только с ЖК экранами.
600W
Мощный №1:
- power 600W;
- 10-60V преобразует в 12-80V;
- нагрузка на выходе до 10А;
- цена от 800руб.
Найти можно по запросу «600W DC 10-60V to 12-80V Boost Converter Step Up»
400W
Мощный №2:
- power 400W;
- 6-40V преобразует в 8-80V;
- на выходе до 10А;
- цена от 1200руб.
Для поиска укажите в поисковике «DC 400W 10A 8-80V Boost Converter Step-Up»
B900W
Мощный №3:
- power 900W;
- 8-40V преобразует в 10-120V;
- на выходе до 15А.
- цена от 1400руб.
Единственный блок который обозначают как B900W и его можно легко найти.
Настройка преобразователя.
Настройка может потребоваться для установки необходимого уровня выходного напряжения.
Я так подобрал количество витков, чтобы при напряжении на аккумуляторе 1,0 Вольт, на выходе преобразователя было около 7 Вольт. При этом напряжении, в мультиметре зажигается индикатор разряда батареи. Таким образом, можно предотвратить слишком глубокий разряд аккумулятора.
Если вместо предложенных транзисторов КТ209К будут использованы другие, тогда придётся подобрать количество витков вторичной обмотки трансформатора. Это связано с разной величиной падения напряжения на p-n переходах у различных типов транзисторов.
Я испытывал эту схему на транзисторах КТ502 при неизменных параметрах трансформатора. Выходное напряжение при этом снизилось на вольт или около того.
Также нужно иметь в виду, что база-эмиттерные переходы транзисторов одновременно являются выпрямителями выходного напряжения
Поэтому, при выборе транзисторов, нужно обратить внимание на этот параметр. То есть, максимально-допустимое напряжение база-эмиттер должно превышать необходимое выходное напряжение преобразователя
Если генерация не возникает, проверьте фазировку всех катушек. Точками на схеме преобразователя (см. выше) отмечено начало каждой обмотки.
Чтобы не возникало путаницы при фазировке катушек кольцевого магнитопровода, примите за начало всех обмоток, например
, все выводы выходящие снизу, а за конец всех обмоток, все выводы выходящие сверху.
Порядок намотки импульсного трансформатора.
Намотать прокладку на кольцевой сердечник столь малых размеров очень сложно, а мотать провод на голый сердечник неудобно и опасно. Изоляция провода может повредиться об острые грани кольца.
Чтобы предотвратить повреждение изоляции, притупите острые кромки магнитопровода, как описано .
Чтобы во время укладки провода, витки не «разбегались», полезно, покрыть сердечник тонким слоем клея «88Н» и просушить до намотки.
Вначале мотаются вторичные обмотки III и IV (см. схему преобразователя). Их нужно намотать сразу в два провода. Витки можно закрепить клеем, например, «БФ-2» или «БФ-4».
У меня не нашлось подходящего провода, и я вместо провода расчётного диаметра 0,16мм использовал провод диаметром 0,18мм, что привело к образованию второго слоя в несколько витков.
Затем, так же в два провода, мотаются первичные обмотки I и II. Витки первичных обмоток также можно закрепить клеем.
Преобразователь я собрал методом навесного монтажа, предварительно связав х/б нитью транзисторы, конденсаторы и трансформатор.
Вход, выход и общую шину преобразователя вывел гибким многожильным проводом.
Импульсные преобразователи и стабилизаторы
Для стабилизации выходного напряжения импульсных стабилизаторов любого типа могут быть использованы обычные «линейные» стабилизаторы, но они имеют низкий КПД, В этой связи гораздо логичнее для стабилизации выходного напряжения импульсных преобразователей использовать импульсные же стабилизаторы напряжения, тем более, что осуществить такую стабилизацию совсем несложно.
Импульсные стабилизаторы напряжения, в свою очередь, подразделяются на стабилизаторы с широтно-импульсной модуляцией и на стабилизаторы с частотно-импульсной модуляцией. В первых из них изменяется длительность управляющих импульсов при неизменной частоте их следования. Во вторых, напротив, изменяется частота управляющих импульсов при их неизменной длительности. Встречаются импульсные стабилизаторы и со смешанным регулированием.
Ниже будут рассмотрены радиолюбительские примеры эволюционного развития импульсных преобразователей и стабилизаторов напряжения.
Применение
Недавно я закупил много различных светодиодов на 1W, 3W, 5W, 10W, 20W, 30W, 50W, 100W. Все они низкого качества, для сравнения их с качественными. Чтобы всю эту кучу подключить и запитать у меня есть блоки питания от ноутбуков на 12 В и 19V. Пришлось активно полистать Aliexpress в поисках низковольтных светодиодных драйверов.
Были куплены современные повышающие преобразователи напряжения DC DC и понижающие, на 1-2 Ампера и мощные на 5-7 ампер. К тому же они отлично подойдут для подключения ноутбука к 12В в автомобиле, 80-90 ватт потянут. Они вполне подойдут в качестве зарядного устройства для автомобильных аккумуляторов на 12В и 24В.
LM2577
Популярными микросхемами для повышающих импульсных стабилизаторов стали:
- LM2577, устаревшая с низким КПД;
- XL4016, в 2 раза эффективней 2577;
- XL6009;
- MT3608.
Делать DC DC повышающий преобразователь своими руками не рационально, потрачу слишком много времени на сборку и настройку. У китайцев можно купить за 50-250руб, эта цена включает и доставку. За эту сумму получу почти готовое изделие, которое можно максимально быстро доработать.
Данные импульсные ИМС используются совместно с другими, написал характеристики и datasheet к популярным ИМС для питания TL431, LM358, LM494, LM317.
Импульсно-резонансный преобразователь
Импульсно-резонансные преобразователи конструкции к,т.н. Н. М. Музыченко, один из которых показан на рис. 4,27, в зависимости от формы тока в ключе VT1 делятся на три разновидности, в которых коммутирующие элементы замыкаются при нулевом токе, а размыкаются — при нулевом напряжении. На этапе переключения преобразователи работают как резонансные, а остальную, большую, часть периода — как импульсные.
Рис. 27. Схема импульсно-резонансного преобразователя Н. М. Музыченко.
Отличительной чертой таких преобразователей является то, что их силовая часть выполнена в виде индуктивно-емкостного моста с коммутатором в одной диагонали и с коммутатором и источником питания в другом. Такие схемы (рис. 27) отличаются высокой эффективностью.
Подходит например для питания ноутбука в авто, для преобразования 12-24, для подзарядки автомобильного аккумулятора от БП на 12V и т.п
Преобразователь добирался с левым треком типа UAххххYP и о-очень долго, 3 месяца, чуть диспут не открыл.
Продавец хорошо замотал устройство.
В комплекте были латунные стойки с гаечками и шайбочками, которые сразу прикрутил, чтобы не затерялись.
Монтаж довольно качественный, плата отмыта.
Радиаторы вполне приличные, хорошо закреплены и изолированы от схемы.
Дроссель намотан в 3 провода — правильное решение на таких частотах и токах.
Единственное — дроссель не закреплён и висит на самих проводах.
Реальная схема устройства:
Наличие стабилизатора питания микросхемы порадовало — это значительно расширяет диапазон входного рабочего напряжения сверху (до 32В).
Выходное напряжение естественно не может быть меньше входного.
Подстроечным многооборотным резистором можно настраивать выходное стабилизированное напряжение в диапазоне от входного до 35В
Красный светодиодный индикатор горит при наличии напряжения на выходе.
Собран преобразователь на базе широко распространённого ШИМ контроллера UC3843AN
Схема подключения — стандартная, добавлен эмиттерный повторитель на транзисторе для компенсации сигнала с токового датчика. Это позволяет повысить чувствительность токовой защиты и снизить потери напряжения на токовом датчике.
Рабочая частота 120кГц
Если-бы Китайцы и тут не накосячили, я-бы сильно удивился:)
— При небольшой нагрузке, генерация происходит пачками, при этом слышно шипение дросселя. Также заметна задержка регулирования при изменении нагрузки.
Это происходит из-за неверно выбранной цепи компенсации обратной связи (конденсатор 100нФ между 1 и 2 ногами). Значительно уменьшил ёмкость конденсатора (до 200пФ) и подпаял сверху резистор 47кОм.
Шипение пропало, стабильность работы возросла.
Конденсатор для фильтрации импульсных помех на входе токовой защиты поставить забыли. Поставил конденсатор 200пФ между 3 ногой и общим проводником.
Отсутствует шунтирующая керамика параллельно электролитам. При необходимости, можно допаять SMD керамику.
Защита от перегрузки имеется, защиты от КЗ нет.
Никаких фильтров не предусмотрено, входной и выходной конденсаторы не очень хорошо сглаживают напряжение при мощной нагрузке.
Если входное напряжение вблизи нижней границе допуска (10-12В), имеет смысл переключить питание контроллера со входной цепи на выходную, перепаяв предусмотренную на плате перемычку
Осциллограмма на ключе при входном напряжении 12В
При небольшой нагрузке наблюдается колебательный процесс дросселя
Вот что удалось выжать в максимуме при входном напряжении 12В
Вход 12В / 9A Выход 20В / 4,5А (90 Вт)
При этом оба радиатора прилично разогрелись, но перегрева не было
Осциллограммы на ключе и выходе. Как видно, пульсации очень велики из за небольших емкостей и отсутствия шунтирующей керамики
Если входной ток достигает 10А, преобразователь начинает противно свистеть (срабатывает токовая защита) и выходное напряжение снижается
На самом деле, максимальная мощность преобразователя сильно зависит от входного напряжения. Производитель заявляет 150Вт, максимальный входной ток 10А, максимальный выходной ток 6А. Если преобразовывать 24В в 30В, то конечно он выдаст заявленные 150Вт и даже немного больше, только вряд-ли это кому-то нужно. При входном напряжении 12В, можно рассчитывать только на 90Вт
Выводы делайте сами:)
Планирую купить
+91
Добавить в избранное
Обзор понравился
+68
+149
Доработка мультиметра.
Мультиметр DT-830B сразу же заработал от модернизированной «Кроны». А вот тестер M890C+ пришлось немного доработать.
Дело в том, что в большинстве современных мультиметров задействована функция автоматического отключения питания. На картинке показана часть панели управления мультиметра, где обозначена данная функция.
Схема автоотключения (Auto Power Off) работает следующим образом. При подключении батареи, заряжется конденсатор С10. При включении питания, пока конденсатор C10 разряжается через резистор R36, на выходе компаратора IC1 удерживается высокий потенциал, что приводит к отпиранию транзисторов VT2 и VT3. Через открытый транзистор VT3 напряжение питания и попадает в схему мультиметра.
Как видите, для нормальной работы схемы, нужно подать питание на С10 ещё до того, как включится основная нагрузка, что невозможно, так как наша модернизированная «Крона», напротив, включится только тогда, когда появится нагрузка.
В общем, вся доработка заключалась в установке дополнительной перемычки. Для неё я выбрал место, где это было сделать удобнее всего.
К сожалению, обозначения элементов на электрической схеме не совпали с обозначениями на печатной плате моего мультиметра, поэтому точки для установки перемычки нашёл так. Прозвонкой выявил нужный вывод выключателя, а шину питания +9V определил по 8-ой ножке операционного усилителя IC1 (L358).
Универсальный повышающий преобразователь MT3608
Простой повышающий преобразователь на основе микросхемы MT3608 получил широкое распространение среди радиолюбителей. Его применение зачастую необходимо для построения различных самодельных приборов, пауэрбанков, автомобильных зарядных устройств и многого другого.
Главным элементом конвертера можно назвать микросхему MT3608, которая по своей сути является одновременно генератором и силовым транзистором. Универсальность MT3608 позволяет облегчить плату – на ней располагается считанное число элементов. Инвертор способен повышать входное напряжение до 28 Вольт. Сперва многооборотный резистор подстройки необходимо повернуть на 10 шагов против часовой стрелки, после чего станет возможной настройка выходных значений. Повышающий преобразователь тока DC DC работает с источниками силой до 2 Ампер.
Минимальное входное напряжение – примерно 2 Вольта. Это означает, что конвертер включается при условии, что на вход подается напряжение по крайней мере в 2 В. Максимальное напряжение на входе – 24 В. Ток холостого хода крайне мал, менее 10 мА, что положительно влияет на эффективность работы схемы. Генератор функционирует на частоте в районе полутора мегагерц.
Step up DC DC converter MT3608 работает на основе импульсной схемы преобразования, показывающей высокий коэффициент полезного действия – до 93 процентов. Минимальная емкость равна около 0.005 Ач, частота дискретизации – до 50 миллисекунд. Повышающий конвертер напряжения имеет крайне малые габариты и без проблем встраивается в различные приборы. В длину плата около 3.6 сантиметра, в ширину – 1.7 сантиметра. Вес преобразователя не превышает 20 граммов. Конвертор напряжения показывает стабильную работу при температуре окружающей среды от минус 45 градусов.
Купить преобразователь MT3608 можно в магазине инструментов «Суперайс» с оперативной доставкой в Новосибирск, Уфу, Самару и другие города России. Курьерская доставка по Москве, при заказе от 3000 рублей – отправка бесплатно. Гарантия качества, возврат без проблем! Мы работаем с организациями, с физическими и юридическими лицами.
Схема подключения:
Статьи и инструкции:
Обзор регулируемых преобразователей напряжения (стабилизаторов, DC-DC конвертеров)