Транзистор и биполярный транзистор, расчёт транзисторного каскада

Особенности монтажа совмещенной коллекторной системы отопления

Схема монтажа

Данная схема считается самой сложной и дорогостоящей в исполнении из-за необходимости разделения основного контура отопления на два с разными температурами. Как следствие в нее вводят узел подмеса и увеличивают число коллекторов. Теплоноситель движется:

1. С выходного патрубка котла на тройник, с подачей горячей воды на коллектор, обслуживающий радиаторы, и смеситель, подключаемый к подающим гребенкам теплого пола.

2. Более горячий теплоноситель проходит коллектор и контур радиаторов и возвращается на смеситель и далее – на коллектор теплого пола.

3. Пройдя через все контуры теплоноситель возвращается для нагрева в котел или идет на сброс.

Арматура для подмеса горячего теплоносителя или холодной воды (а именно – двухходовой или трехходовой клапан с термостатической головкой) открывается или закрывается при отклонении температуры на входе в коллектор теплых полов от +35°С или другого заданного значения. При такой схеме радиаторы как правило размещаются на втором и верхнем этаже, водяные трубы теплого пола – на первом. При недостаточной скорости движения теплоносителя в нижнем контуре в схему вводят дополнительный циркуляционный насос.Ошибки при проектировании и монтаже

К частным ошибкам таких схем относят:

Теперь вы знаете ответ на вопрос: коллекторная система отопления частного дома, плюсы и минусы, особенности монтажа, ошибки, которые лучше не допускать.

Коллекторная система отопления частного дома

Коллекторная система отопления частного дома. Основным отличием такой системы отопления от других двухтрубных разновидностей является наличие соединительного узла, подключаемого непосредственно к котлу через две магистрали (подающую и обратную) и распределяющего теплоноситель по небольшим отдельным контурам.

Последние свою очередь представляют собой трубы водяного напольного отопления или линии питания и сбора обратки с радиаторов. Каждый отвод коллекторов снабжается отдельной запорной арматурой с колпаками плавной регулировки, контуры не зависят друг от друга, легко отключаются и управляются.

Движение воды по многочисленным контурам обеспечивает циркуляционный электрический насос, как правило размещаемый в обратной магистрали (альтернатива – установка устройств принудительной циркуляции в начале или на обратке каждой автономной ветви).

Стабильность и безопасность эксплуатации достигается за счет ввода в схему мембранного расширительного бачка, устанавливаемого на участке трубы с остывшим теплоносителем.

Минимальная емкость бачка должна превышать объем циркуляции как минимум на 3%, лучше больше.

Дополнительные функции безопасности и управления выполняют:

Число поддерживаемых стандартным коллектором контуров зависит от параметров разъема гребенки и варьируется от 2 до 12. В сложных системах могут устанавливаться коллекторы с большим числом разъемов, но обычно в этом нет необходимости.

Материал труб подбирается исходя из параметров теплоносителя и типа системы (напольной, радиаторной или комбинированной), с учетом вероятного скрытия в стяжке предпочтение отдается качественному металлопластику или сшитому п/э.

Совет! Кто бы, что не говорил делайте монтаж труб в стяжке без соединений, только цельными участками

Это важно!. Плюсы и минусы

Плюсы и минусы

Преимущества коллекторной схемы проявляются в:

• Повышении общего КПД системы за счет ускоренной подачи нагретой воды или антифриза к теплообменникам, возможности уменьшения сечения труб (и, как следствие, — производительности котла) и сокращения доли теплопотерь.
• Эстетичности. Уменьшение диаметра труб позволяет скрыть их в сравнительно тонкой стяжке пола. Сам узел гребенки размещается в компактном и малозаметном ящике, зачастую – монтируемом в нише.
• Возможности контроля температуры и отключения контуров в отдельных помещениях без снижения работоспособности всей системы.
• Сравнительно простых правилах проектирования и монтажа, возможности совмещения систем напольного и радиаторного обогрева.

Основным минусом коллекторных систем признана дороговизна, на монтаж независимых контуров (более длинных даже в сравнении с обычными двухтрубными разводками) и распределительных гребенок уходит много средств и времени. Такие системы всегда зависят от работы циркуляционных насосов и являются энергозависимыми.

В регионах с промерзаемыми грунтом и частными отключениями э/э внутрь воду в трубах заменяет антифриз, что также повышает смету.

В итоге коллекторные системы признаны оптимальными для обогрева больших по площади частных домов (включая двухэтажные) с разным назначением жилых зон.

Этот тип рекомендуют выбрать при повышенных требованиях к эстетичности и энергоэффективности системы и закладывать на этапах капитального строительства или ремонта дома

Монтаж коллекторных схем и шкафов при наличии ранее уложенных и уже эксплуатируемых полов считается трудоемким и неоправданным, при отсутствии возможности скрытия труб в стяжке разводка привлекает излишнее внимание и хуже выглядит

Технология монтажа радиаторной коллекторной системы отопления

Схема монтажа

Этот вид коллекторной системы признан самым простым в расчете и монтаже, при относительно равной длине контуров и числе подключаемых радиаторов (от 1 до 3, не более) схема функционирует с одним циркуляционным насосом, без потребности в дорогостоящей автоматике.

Риски завоздушивания исключают краны Маевского на самих радиаторах и отводчики на коллекторах. При разном расходе и параметрах теплоносителя схема усложняется и каждая отельная ветвь оснащается своим насосом, автоматикой и группой безопасности.

Непосредственно до начала монтажа определяется число, место расположения, тип и параметры радиаторов, составляется план прохода труб и принимаются меры по их защите от преждевременного остывания. При этом трубы либо замоноличиваются в цементной стяжке с толщиной в пределах 5-7 см, изолированной от воздействия грунта, или скрываются в пустых полах. Схема разводки составляется с учетом ряда правил:

Стандартный диаметр подключения гребенок к трубам, идущим к котлу, составляет ¾ дюйма, к внутренним контурам – ½, сечение последних в частных домах не превышает 16 мм.

Способ подключения труб к радиаторам особой роли не играет, но в большинстве случаев они присоединяются к нижним патрубкам из-за соображений эстетичности и экономии материалов.

В обычных схемах все радиаторы подключаются к коллекторам отдельно (с возможностью регулировки каждого и максимальной теплоотдачей), но при достаточной длине, установке байпасов и сбалансированным гидравлическом сопротивлении в одной петле могут монтироваться 2 или 3 небольшие батареи с последовательным подключением.Ошибки при проектировании и монтаже

Основные сложности возникают при подборе места размещения коллекторного шкафа и заложении контуров с равными параметрами и длинной. При условии одинакового давления и расхода в радиаторных системах один коллектор может обслуживать 2 этажа одновременно, но такие схемы не считаются удачными.

В частности, при недостаточной мощности насосов на верхних этажах или в больших контурах циркуляция теплоносителя будет слабой. Во избежание таких проблем для обслуживания разных этажей выделяют отдельные коллекторы со своими насосами и устанавливают их в центре дома.

К возможным ошибкам также относят:

Технология монтажа коллекторной системы отопления теплым водяным полом

Схема монтажа

В стандартную схему таких систем помимо коллекторного узла, насоса и расширительного бака входит терморегулятор и узел подмеса.

Системы напольного обогрева являются низкотемпературными, параметры воды или антифриза в контурах поддерживаются в пределах 30-40 °С (при максимуме в 55).

При оптимальной настройке разница между температурой на подающей и обратной гребенке не превышает 10 °С, а понижение до нужного значения на входе достигается путем смешивания остывшего теплоносителя с горячим в узле подмеса.

Лучшие коллекторы в таких системах оснащены расходомерами, приборами регулировки расхода воды, кранами для перекрытия каждого контура и электроприводами, работающими в комплексе с термостатом.

При максимально возможных 12 контурах подключения лучшие результаты достигаются при обслуживании одним коллектором не более 8 отдельных петель водяного пола.

Требования к контуру обогрева стандартные:

Перед заливкой стяжки система опрессовывается и оставляется заполненной как минимум на сутки. Опрессовку проводят при рабочей температуре теплоносителя и давлении в 1,5-2 от номинала, бетонирование – после проверки равномерности нагрева, герметичности и отсутствии потерь давления, исключительно в остывшем состоянии. Толщина стяжки поддерживается в пределах 5-7 см, при минимуме от 3.

Ошибки при проектировании и монтаже

Помимо описанных выше ошибок (нарушение порядка присоединения труб, замоноличивания участка соединения труб с гребенкой бетоном, низкая или чрезмерная мощность насоса, разное гидравлическое соединение в контурах) при монтаже коллекторных систем теплого пола допускаются типичные нарушения:

Многие спрашивают можно ли отопить дом только теплым полом! Отвечаю, при правильной теплоизоляции строения теплый пол отличное решение, которое будет вас радовать и экономить деньги при отоплении. Но скажу честно, деревянный дом или дом плохо утепленный, теплый пол не обогреет, более того он все время будет сильно теплым, что привнесет в вашу жизнь некий дискомфорт.

В своем доме я сделал отопление только теплым водяным полом и очень доволен результатом.

Устройство и принцип работы

Чтобы впускной коллектор выполнял все возложенные на него задачи, он должен иметь строго рассчитанную геометрическую форму. Например, для того, чтобы поток внутри не замедлялся, коллектор проектируется без углов и прямых линий. Плавные изгибы, округлая форма способствуют более мощному воздушному потоку.

Устройство впускного коллектора

На входе во впускной коллектор находится карбюратор или дроссельная заслонка, если речь идет об инжекторном двигателе. Центральный канал разделяется на отдельные рукава – раннеры, которые подходят к цилиндрам, а точнее, к впускным клапанам.

Топливные форсунки размещаются возле впускных клапанов (в системе распределенного впрыска) или в центральном канале, если установлен моновпрыск.

По форме впускного канала различают одноплоскостные и двухплоскостные:

  1. Одноплоскостные – только с одним каналом для прохождения воздуха или топливно-воздушной смеси. Эти коллекторы пропускают за единицу времени большое количество воздуха, а значит, позволяют двигателю развить максимально возможную мощность на высоких оборотах;
  2. Двухплоскостные – те, в которых канал разделен на две части. Они дают возможность получить больше отдачи мощности на низких и средних оборотах двигателя.

Материалы.
Изначально впускные коллекторы делались металлическими: из чугуна, стали, алюминия. Проблема таких конструкций не только в достаточно высокой цене, но и в значительном нагреве от цилиндров двигателя. Сегодня их в основном делают из специального термостойкого пластика, который обладает меньшей теплопроводностью, а значит, и меньше нагревает воздух внутри.

Принцип работы.
Основной принцип работы коллектора – подача воздуха на фазе впуска. Инициатором движения воздуха  является сам двигатель. Когда поршень опускается, в камере сгорания над ним создается зона низкого давления. На фазе впуска, когда клапан открыт, опускающийся поршень затягивает воздух, как хороший насос. Таким образом, от центрального канала воздух поступает в нужный раннер, а из него – в камеру сгорания. На видео-3д анимации, ниже, наглядно показан принцип работы впускного коллектора с вихревыми клапанами.

Если на автомобиле установлен карбюратор или центральная форсунка, при втягивании воздуха в раннер, поток топлива (или топливно-воздушной смеси) поступает в нужный цилиндр. Благодаря тому, что поток внутри коллектора турбулентный, топливо лучше перемешивается с воздухом и, следовательно, лучше сгорает. Турбулентный воздушный поток проектируется в коллекторе специально: он быстрее движется и лучше наполняет цилиндры.

В автомобилях с распределенным впрыском форсунки установлены в раннерах коллектора перед впускными клапанами. В этом случае по коллектору движется только воздух, который смешивается с распыленным топливом перед самым входом в цилиндр двигателя. Здесь скорость и структура воздушного потока также важны, поскольку для качественного приготовления топливно-воздушной смеси остается меньше времени и места.

Резонансные колебания.
Чтобы усилить поток поступающего воздуха, внутренняя геометрия впускного коллектора рассчитывается так, чтобы образовался так называемый резонанс Гельмгольца. Примерная схема, как это работает:

  1. На фазе всасывания поршень мотора опускается вниз, создавая зону разрежения, и через открывшийся клапан в камеру сгорания на большой скорости заходит воздух;
  2. Однако объем раннера намного больше, чем объем цилиндра, поэтому весь воздух, который “взял разгон” в коллекторе, в камеру сгорания не попадает;
  3. Перед закрывшимся впускным клапаном создается зона повышенного давления, когда воздух по инерции продолжает движение вперед;
  4. Клапан всё еще закрыт, так что давление в раннере выравнивается, то есть происходит “откат”, а после него перед впускным клапаном опять образуется зона повышенного давления. Эти резонансные колебания воздуха зависят от формы и размера коллектора и рассчитываются под каждый двигатель отдельно.

Биполярные транзисторы

Биполярные транзисторы (BJT, Bipolar Junction Transistors) имеют три контакта:

  • Коллектор (collector) — на него подаётся высокое напряжение, которым хочется управлять
  • База (base) — через неё подаётся небольшой ток, чтобы разблокировать большой; база заземляется, чтобы заблокировать его
  • Эмиттер (emitter) — через него проходит ток с коллектора и базы, когда транзистор «открыт»

Основной характеристикой биполярного транзистора является показатель hfe
также известный, как gain. Он отражает во сколько раз больший ток по участку коллектор–эмиттер
способен пропустить транзистор по отношению к току база–эмиттер.

Например, если hfe = 100, и через базу проходит 0.1 мА, то транзистор пропустит
через себя как максимум 10 мА. Если в этом случае на участке с большим током находится компонент,
который потребляет, например 8 мА, ему будет предоставлено 8 мА, а у транзистора останется «запас».
Если же имеется компонент, который потребляет 20 мА, ему будут предоставлены только максимальные
10 мА.

Также в документации к каждому транзистору указаны максимально допустимые напряжения и токи на
контактах. Превышение этих величин ведёт к избыточному нагреву
и сокращению службы, а сильное превышение может привести к разрушению.

NPN и PNP

Описанный выше транзистор — это так называемый NPN-транзистор. Называется он так из-за того, что состоит
из трёх слоёв кремния, соединённых в порядке: Negative-Positive-Negative. Где negative — это сплав
кремния, обладающий избытком отрицательных переносчиков заряда (n-doped), а positive —
с избытком положительных (p-doped).

NPN более эффективны и распространены в промышленности.

PNP-транзисторы при обозначении отличаются направлением стрелки. Стрелка всегда указывает от P к N.
PNP-транзисторы отличаются «перевёрнутым» поведением: ток не блокируется, когда база заземлена и блокируется,
когда через неё идёт ток.

Расчёт транзисторного каскада с общим эмиттером (ОЭ)

Прежде чем перейти непосредственно к расчёту транзисторного каскада, обратим внимание на следующие требования и условия:

• Расчёт транзисторного каскада проводят, как правило, с конца (т.е. с выхода);

• Для расчета транзисторного каскада нужно определить падение напряжения на переходе коллектор-эмиттер транзистора в режиме покоя (когда отсутствует входной сигнал). Оно выбирается таким, чтобы получить максимально неискаженный сигнал. В однотактной схеме транзисторного каскада работающего в режиме «A» это, как правило, половина значения напряжения источника питания;

• В эмиттерной цепи транзистора бежит два тока — ток коллектора (по пути коллектор-эмиттер) и ток базы (по пути база-эмиттер), но так как ток базы достаточно мал, им можно пренебречь и принять, что ток коллектора равен току эмиттера;

• Транзистор – усилительный элемент, поэтому справедливо будет заметить, что способность его усиливать сигналы должна выражаться какой-то величиной. Величина усиления выражается показателем, взятым из теории четырёхполюсников — коэффициент усиления тока базы в схеме включения с общим эмиттером (ОЭ) и обозначается он — h21. Его значение приводится в справочниках для конкретных типов транзисторов, причём, обычно в справочниках приводится вилка (например: 50 – 200). Для расчётов обычно выбирают минимальное значение (из примера выбираем значение — 50);

• Коллекторное (Rк) и эмиттерное (Rэ) сопротивления влияют на входное и выходное сопротивления транзисторного каскада. Можно считать, что входное сопротивление каскада Rвх=Rэ*h21, а выходное равно Rвых=Rк

Если Вам не важно входное сопротивление транзисторного каскада, то можно обойтись вовсе без резистора Rэ;

• Номиналы резисторов Rк и Rэ ограничивают токи, протекающие через транзистор и рассеиваемую на транзисторе мощность.

Релейный выход

Такой выход представляет собой обычное электромагнитное реле, управляемое внутренней логикой контроллера. С помощью такого выхода можно скоммутировать любую внешнюю силовую нагрузку: электрическую печь, клапан, насос, привод и т.д. При этом необходимо учитывать мощность коммутируемого устройства (чтобы максимально возможный ток, протекающий в цепи не превышал предельный ток указанный для этого выхода). В технических характеристиках обязательно указывают нагрузочную способность выхода. Может быть 1, 2…10А — это и есть основная характеристика релейного выхода.

Ещё релейные выходы различают по количеству контактов. Как у обычного реле, у релейного выхода могут быть нормально-открытый (НО) и нормально-закрытый (НЗ) контакты. Чаще всего на корпус устройства выводят только НО контакт, как наиболее часто применяемый, для экономии места.

Однако встречаются ПЛК и модули дискретного вывода, где релейный выход имеет перекидной ключ с одним общим контактом — такой ключ называют перекидным.

Схема подключения ОВЕН ПЛК150

Как видно на схеме, дискретные выходы DO1 и DO2 имеют перекидной контакт (3 вывода), а DO3 и DO4 только НО контакт.

Теперь рассмотрим преимущества и недостатки релейного выхода.

Преимущества:

  • выход уже готов к коммутации силовой (или слаботочной) нагрузки — нет необходимости в использовании внешних реле
  • не нужно устанавливать внешний источник пропитки выходов
  • релейные выходы независимы друг от друга и могут коммутировать разные по характеристикам цепи (например, один выход может включать лампу на 220В, а другой  — капан на 12 В)
  • не греются

Недостатки:

  • искрение контактов при коммутации индуктивной нагрузки
  • меньший ресурс (по сравнению с выходом типа «транзисторный ключ»)
  • возможно залипание контактов реле при перегрузке
  • задержка при срабатывании относительно большая (опять же по сравнению с выходом типа «транзисторный ключ»)

Простейший ключ

В дальнейшем полевым транзистором мы будет называть конкретно MOSFET,
то есть полевые транзисторы с изолированным
затвором
(они же МОП, они же МДП). Они удобны тем, что управляются
исключительно напряжением: если напряжение на затворе больше
порогового, то транзистор открывается. При этом управляющий ток через
транзистор пока он открыт или закрыт не течёт. Это значительное
преимущество перед биполярными транзисторами, у которых ток течёт всё
время, пока открыт транзистор.

Также в дальнейшем мы будем использовать только n-канальные MOSFET
(даже для двухтактных схем). Это связано с тем, что n-канальные
транзисторы дешевле и имеют лучшие характеристики.

Простейшая схема ключа на MOSFET приведена ниже.

Опять же, нагрузка подключена «сверху», к стоку. Если подключить её
«снизу», то схема не будет работать. Дело в том, что транзистор
открывается, если напряжение между затвором и истоком превышает
пороговое. При подключении «снизу» нагрузка будет давать
дополнительное падение напряжения, и транзистор может не открыться или
открыться не полностью.

Несмотря на то, что MOSFET управляется только напряжением и ток через
затвор не идёт, затвор образует с подложкой паразитный
конденсатор. Когда транзистор открывается или закрывается, этот
конденсатор заряжается или разряжается через вход ключевой схемы. И
если этот вход подключен к push-pull выходу микросхемы, через неё
потечёт довольно большой ток, который может вывести её из строя.

При управлении типа push-pull схема разряда конденсатора образует,
фактически, RC-цепочку, в которой максимальный ток разряда будет равен

где — напряжение, которым управляется транзистор.

Таким образом, достаточно будет поставить резистор на 100 Ом, чтобы
ограничить ток заряда — разряда до 10 мА. Но чем больше сопротивление
резистора, тем медленнее он будет открываться и закрываться, так как
постоянная времени увеличится

Это важно, если транзистор
часто переключается. Например, в ШИМ-регуляторе

Основные параметры, на которые следует обращать внимание — это
пороговое напряжение , максимальный ток через сток и
сопротивление сток — исток у открытого транзистора. Ниже приведена таблица с примерами характеристик МОП-транзисторов

Ниже приведена таблица с примерами характеристик МОП-транзисторов.

Модель
2N7000 3 В 200 мА 5 Ом
IRFZ44N 4 В 35 А 0,0175 Ом
IRF630 4 В 9 А 0,4 Ом
IRL2505 2 В 74 А 0,008 Ом

Для приведены максимальные значения. Дело в том, что у разных
транзисторов даже из одной партии этот параметр может сильно
отличаться. Но если максимальное значение равно, скажем, 3 В, то этот
транзистор гарантированно можно использовать в цифровых схемах с
напряжением питания 3,3 В или 5 В.

Сопротивление сток — исток у приведённых моделей транзисторов
достаточно маленькое, но следует помнить, что при больших напряжениях
управляемой нагрузки даже оно может привести к выделению значительной
мощности в виде тепла.

Часть 1: Расчет тепловыделения и радиатора при постоянном токе

Сначала простой случай, расчет радиатора по данным тепловыделения при постоянном токе.

Для примера рассмотрим расчет радиатора для MOSFET-а IRLR024N

В этом примере предполагается, что MOSFET включается и долгое время находится в полностью открытом состоянии. Например, переключение производится не чаще чем с частотой 1 Гц.

В даташите нас интересуют параметры теплового сопротивления Junction-to-Case (сопротивление переход-корпус), Junctione-to-Ambient (PCB mount) (переход-окружающая среда при монтаже на 1кв.дюйм медной заливки на плате), Junction-to-Ambient (корпус-окружающая среда).

RθJC = 3.3 К/Вт
RθJApcb= 50 К/Вт
RθJA = 110 К/Вт
(Кельвины и Цельсии не играет роли, так как речь о разницах).

Цифра 110 К/Вт означает, то при выделяемой мощности 1Вт разница температур между внешней средой и переходом будет 110 градусов. Например, если границе корпус-воздух будет 40 градусов, то это значит, что переход внутри транзистора имеет температуру 40+110=150 градусов. Если выделяется 2Вт, то внутри будет 40+110*2=260 градусов.

Предположим, что напряжение на затворе будет 3.3В. А ток будет 3А. Из графика «Typical Transfer Characteristics» находим, что при напряжении 3.5В ток составляет 8А. Т.е. сопротивление составляет 0,4375 Ом. При этом смотрим на график «Normalized On-Resistance Vs. Temperature» и видим, что при 90 градусах сопротивление растет в 1.5 раза.

Допускаем по дизайну нагрев до 90 градусов, а сопротивление считаем 0.4375*1.5= 0,6563 Ом.

Получаем, что рассеиваться на транзисторе будет P=I^2*R=3*3*0,6563=5,9067 = 6 Вт.

Предполагается, что транзистор будет работать в окружении, где температура воздуха будет до 30 градусов (что очень оптимистично, так как он греет воздух вокруг себя).

Итак, запас по температуре составляет 90-30=60 градусов. Получается что максимальное общее теплового сопротивления равно (90-30)/6Вт=10 К/Вт

При этом сопротивление переход-корпус уже съело 3.3 К/Вт. У нас остается 8.3 К/Вт.

Монтаж радиатора будет производится на силиконовый клей. Предположим, что наш клей — HC910. Проводимость его 1.7 Вт/м*К.

У нас площадь приклеивания будет 0.25д*0.24д=0.01м*0.009м=0,0000054 кв.м.

Толщина слоя нанесения 0.0001м (0.1 мм). Эта оценка подтверждена документацией на подобные клеи.

Тепловое сопротивление слоя клея равно = толщина/(площадь*проводимость)=0,53 К/Вт

Остается 7.77 К/Вт на сам радиатор. Выбираем в магазине каком-нибудь.

И это будет довольно крупный радиатор. Примерно 10х10х5 см за нормальные деньги.

Теперь решим вопрос, а какой допустимый ток, при котором можно обойтись без радиатора вообще.

Возьмем вариант, когда транзистор припаян к площадке на плате площадью 1кв. дюйм. RθJApcb= 50 К/Вт. Предположим, что все устройство работает в коробочке и воздух в ней, за счет других компонентов и этого MOSFET-а, может нагреваться до 50 градусов. Предел нагрева для выбранного транзистора 175 градусов. Но мы возьмем максимум 125. Тогда максимальная допустимая мощность будет (125К-50К) / 50К/Вт= 1,5 Вт.

Если же он не припаян к площадке, то RθJA = 110 К/Вт, и получаем максимальную мощность (125К-50К) / 110К/Вт= 0,6 Вт.

Расчет по корпусу приведенный здесь более реалистичный, чем с радиатором. Однако, если устройство должно работать в различных условиях, то требуется внесение понижающего коэффициента для высот. Например, для высоты 2000м коэффициент 0.8 (т.е. не 0.6Вт, а 0,5Вт) для высоты 3500м – 0.75.

При 125 градусах Rds(on) будет составлять 1.75 * Rds(on) при 20 градусах, т.е. 0,4375 * 1,75=0,765625 Ом.
P=I^2*R => I=SQRT(P/R)

Получаем, что при припайке на площадку на плате максимальный ток будет Imax=корень(1.5/0.765625)=1.4A
Без площадки Imax=корень(0,6/0,765625)=0,9A

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector