Биполярный транзистор
Содержание:
Электромагнитное реле
Реле – это электромагнит, которым производится управление группой контактов. Можно провести аналогию с обычным кнопочным выключателем. Только в случае с реле усилие берется не от руки, а от магнитного поля, которое находится вокруг катушки возбуждения. Контактами можно коммутировать очень большую нагрузку – все зависит от типа электромагнитного реле. Очень большое распространение эти устройства получили в автомобильной технике – с их помощью производится включение всех мощных потребителей электроэнергии.
Это позволяет разделить все электрооборудование автомобиля на силовую часть и управляющую. Ток потребления у обмотки возбуждения реле очень маленький. А силовые контакты имеют напыление из драгоценных или полудрагоценных металлов, что исключает вероятность появления дуги. Схемы транзисторных ключей на 12 вольт можно применять вместо реле. При этом улучшается функциональность устройства – включение бесшумное, контакты не щелкают.
Для чего нужны транзисторы?
Область применение разграничена в зависимости от типа прибора — биполярный модуль или полевой. Зачем нужны транзисторы? Если необходима малая сила тока, например, в цифровых планах, используют полевые виды. Аналоговые схемы достигают показателей высокой линейности усиления при различном диапазоне питающего вольтажа и выходных параметров.
Областями установки биполярных транзисторов являются усилители, их сочетания, детекторы, модуляторы, схемы транзисторной логистики и инверторы логического типа.
Места применения транзисторов зависят от их характеристик. Они работают в 2 режимах:
- в усилительном порядке, изменяя выходной импульс при небольших отклонениях управляющего сигнала;
- в ключевом регламенте, управляя питанием нагрузок при слабом входном токе, транзистор полностью закрыт или открыт.
Вид полупроводникового модуля не изменяет условия его работы. Источник подсоединяется к нагрузке, например, переключатель, усилитель звука, осветительный прибор, это может быть электронный датчик или мощный соседний транзистор. С помощью тока начинается работа нагрузочного прибора, а транзистор подсоединяется в цепь между установкой и источником. Полупроводниковый модуль ограничивает силу энергии, поступающей к агрегату.
Watch this video on YouTube
Сопротивление на выходе транзистора трансформируется в зависимости от вольтажа на управляющем проводнике. Сила тока и напряжение в начале и конечной точке цепи изменяются и увеличиваются или уменьшаются и зависят от типа транзистора и способа его подсоединения. Контроль управляемого источника питания ведет к усилению тока, импульса мощности или увеличению напряжения.
Транзисторы обоих видов используются в следующих случаях:
- В цифровом регламенте. Разработаны экспериментальные проекты цифровых усилительных схем на основе цифроаналоговых преобразователей (ЦАП).
- В генераторах импульсов. В зависимости от типа агрегата транзистор работает в ключевом или линейном порядке для воспроизведения прямоугольных или произвольных сигналов, соответственно.
- В электронных аппаратных приборах. Для защиты сведений и программ от воровства, нелегального взлома и использования. Работа проходит в ключевом режиме, сила тока управляется в аналоговом виде и регулируется с помощью ширины импульса. Транзисторы ставят в приводы электрических двигателей, импульсные стабилизаторы напряжения.
Монокристаллические полупроводники и модули для размыкания и замыкания контура увеличивают мощность, но функционируют только как переключатели. В цифровых устройствах применяют транзисторы полевого типа в качестве экономичных модулей. Технологии изготовления в концепции интегральных экспериментов предусматривают производство транзисторов на едином чипе из кремния.
Миниатюризация кристаллов ведет к ускорению действия компьютеров, снижению количества энергии и уменьшению выделения тепла.
Режимы работы
Напряжения на эмиттере, базе, коллекторе (UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}}) | Смещениеперехода база-эмиттердля типа n-p-n | Смещение перехода база-коллектордля типа n-p-n | Режим для типа n-p-n |
---|---|---|---|
UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}} | прямое | обратное | нормальныйактивный режим |
UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}} | прямое | прямое | режим насыщения |
UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}} | обратное | обратное | режим отсечки |
UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}} | обратное | прямое | инверсныйактивный режим |
Напряжения на эмиттере, базе, коллекторе (UE,UB,UC{\displaystyle U_{E},U_{B},U_{C}}) | Смещениеперехода база-эмиттердля типа p-n-p | Смещение перехода база-коллектордля типа p-n-p | Режимдля типа p-n-p |
UE<UB<UC{\displaystyle U_{E}<U_{B}<U_{C}} | обратное | прямое | инверсныйактивный режим |
UE<UB>UC{\displaystyle U_{E}<U_{B}>U_{C}} | обратное | обратное | режим отсечки |
UE>UB<UC{\displaystyle U_{E}>U_{B}<U_{C}} | прямое | прямое | режим насыщения |
UE>UB>UC{\displaystyle U_{E}>U_{B}>U_{C}} | прямое | обратное | нормальныйактивный режим |
Нормальный активный режим
Переход эмиттер-база включен в прямом направлении (открыт), а переход коллектор-база — в обратном (закрыт):
- UЭБ>0; UКБ<0 (для транзистора n-p-n типа), для транзистора p-n-p типа условие будет иметь вид UЭБ<0; UКБ>0.
Инверсный активный режим
Эмиттерный переход имеет обратное смещение, а коллекторный переход — прямое: UКБ>0; UЭБ<0 (для транзистора n-p-n типа).
Режим насыщения
Оба p-n перехода смещены в прямом направлении (оба открыты).
Если эмиттерный и коллекторный р-n-переходы подключить к внешним источникам в прямом направлении, транзистор будет находиться в режиме насыщения. Диффузионное электрическое поле эмиттерного и коллекторного переходов будет частично ослабляться электрическим полем, создаваемым внешними источниками Uэб и Uкб. В результате уменьшится потенциальный барьер, ограничивавший диффузию основных носителей заряда, и начнётся проникновение (инжекция) дырок из эмиттера и коллектора в базу, то есть через эмиттер и коллектор транзистора потекут токи, называемые токами насыщения эмиттера (IЭ. нас) и коллектора (IК. нас).
Напряжение насыщения коллектор-эмиттер (UКЭ. нас) — это падение напряжения на открытом транзисторе (смысловой аналог RСИ. отк у полевых транзисторов). Аналогично напряжение насыщения база-эмиттер (UБЭ. нас) — это падение напряжения между базой и эмиттером на открытом транзисторе.
Режим отсечки
В данном режиме коллекторный p-n переход смещён в обратном направлении, а на эмиттерный переход может быть подано как обратное, так и прямое смещение, не превышающее порогового значения, при котором начинается эмиссия неосновных носителей заряда в область базы из эмиттера (для кремниевых транзисторов приблизительно 0,6—0,7 В).
Режим отсечки соответствует условию UЭБ<0,6—0,7 В, или IБ=0.
Барьерный режим
В данном режиме база транзистора по постоянному току соединена накоротко или через небольшой резистор с его коллектором, а в коллекторную или в эмиттерную цепь транзистора включается резистор, задающий ток через транзистор. В таком включении транзистор представляет собой своеобразный диод, включенный последовательно с токозадающим резистором.
Подобные схемы каскадов отличаются малым количеством комплектующих, хорошей развязкой по высокой частоте, большим рабочим диапазоном температур, нечувствительностью к параметрам транзисторов.
Транзисторные пары в схемах управления электродвигателями
Их применяют также в H-мостовых цепях управления реверсивными двигателями постоянного тока, позволяющих регулировать ток через двигатель равномерно в обоих направлениях его вращения.
H-мостовая цепь выше называется так потому, что базовая конфигурация ее четырех переключателей на транзисторах напоминает букву «H» с двигателем, расположенным на поперечной линии. Транзисторный H-мост, вероятно, является одним из наиболее часто используемых типов схемы управления реверсивным двигателем постоянного тока. Он использует «взаимодополняющие» пары транзисторов NPN- и PNP-типов в каждой ветви, работающих в качестве ключей при управлении двигателем.
Вход управления A обеспечивает работу мотора в одном направлении, в то время как вход B используется для обратного вращения.
Например, когда транзистор TR1 включен, а TR2 выключен, вход A подключен к напряжению питания (+ Vcc), и если транзистор TR3 выключен, а TR4 включен, то вход B подключен к 0 вольт (GND). Поэтому двигатель будет вращаться в одном направлении, соответствующем положительному потенциалу входа A и отрицательному входа B.
Если состояния ключей изменить так, чтобы TR1 был выключен, TR2 включен, TR3 включен, а TR4 выключен, ток двигателя будет протекать в противоположном направлении, что повлечет его реверсирование.
Используя противоположные уровни логической «1» или «0» на входах A и B, можно управлять направлением вращения мотора.
Вольт-амперные характеристики транзистора
Наиболее полно свойства биполярного транзистора описываются с помощью статических вольт-амперных характеристик. При этом различают входные и выходные ВАХ транзистора. Поскольку все три тока (базовый, коллекторный и эмиттерный) в транзисторе тесно взаимосвязаны, при анализе работы транзистора необходимо пользоваться одновременно входными и выходными ВАХ.
Каждой схеме включения транзистора соответствуют свои вольт-амперные характеристики, представляющие собой функциональную зависимость токов через транзистор от приложенных напряжений. Из-за нелинейного характера указанных зависимостей их представляют обычно в графической форме.
Транзистор, как четырехполюсник, характеризуется входными и выходными статическими ВАХ, показывающими соответственно зависимость входного тока от входного напряжения (при постоянном значении выходного напряжения транзистора) и выходного тока от выходного напряжения (при постоянном входном токе транзистора).
На рисунке 1.27 показаны статические ВАХ р-п-р-транзистора, включенного по схеме с ОЭ (наиболее часто применяемой на практике).
а б
Рисунок 1.27 – Статические ВАХ биполярного транзистора, включенного по схеме с ОЭ
Входная ВАХ (рисунок 1.27, а) подобна прямой ветви ВАХ диода. Она представляет собой зависимость тока IБ от напряжения UБЭ при фиксированном значении напряжения UКЭ, то есть зависимость вида
. (1.12)
Из рисунка 1.27, а видно: чем больше напряжение UКЭ, тем правее смещается ветвь входной ВАХ. Это объясняется тем, что при увеличении обратносмещающего напряжения UКЭ происходит увеличение высоты потенциального барьера коллекторного р-п-перехода. А поскольку в транзисторе коллекторный и эмиттерный р-п-переходы сильно взаимодействуют, то это, в свою очередь, приводит к уменьшению базового тока при неизменном напряжении UБЭ.
Статические ВАХ, представленные на рисунке 1.27, а, сняты при нормальной температуре (20 °С). При повышении температуры эти характеристики будут смещаться влево, а при понижении – вправо. Это связано с тем, что при повышении температуры повышается собственная электропроводность полупроводников.
Для выходной цепи транзистора, включенного по схеме с ОЭ, строится семейство выходных ВАХ (рисунок 1.27, б). Это обусловлено тем, что коллекторный ток транзистора зависит не только (и не столько, как видно из рисунка) от напряжения, приложенного к коллекторному переходу, но и от тока базы. Таким образом, выходной вольт-амперной характеристикой для схемы с ОЭ называется зависимость тока IК от напряжения UКЭ при фиксированном токе IБ, то есть зависимость вида
. (1.13)
Каждая из выходных ВАХ биполярного транзистора характеризуется в начале резким возрастанием выходного тока IК при возрастании выходного напряжения UКЭ, а затем, по мере дальнейшего увеличения напряжения, незначительным изменением тока.
На выходной ВАХ транзистора можно выделить три области, соответствующие различным режимам работы транзистора: область насыщения, область отсечки и область активной работы (усиления), соответствующая активному состоянию транзистора, когда ½UБЭ ½ > 0 и ½UКЭ½> 0.
Входные и выходные статические ВАХ транзисторов используют при графо-аналитическом расчете каскадов, содержащих транзисторы.
Статические входные и выходные ВАХ биполярного транзистора р-п-р-типа для схемы включения с ОБ приведены на рисунке 1.28, а и 1.28, б соответственно.
а б
Рисунок 1.28 – Статические ВАХ биполярного транзистора для схемы включения с ОБ
Для схемы с ОБ входной статической ВАХ называют зависимость тока IЭ от напряжения UЭБ при фиксированном значении напряжения UКБ, то есть зависимость вида
. (1.14)
Выходной статической ВАХ для схемы с ОБ называется зависимость тока IК от напряжения UКБ при фиксированном токе IЭ, то есть зависимость вида
. (1.15)
На рисунке 1.28, б можно выделить две области, соответствующие двум режимам работы транзистора: активный режим (UКБ< 0 и коллекторный переход смещен в обратном направлении); режим насыщения (UКБ > 0 и коллекторный переход смещен в прямом направлении).
Биполярный СВЧ-транзистор
Биполярные СВЧ-транзисторы (БТ СВЧ) служат для усиления колебаний с частотой свыше 0,3 ГГЦ. Верхняя граница частот БТ СВЧ с выходной мощностью более 1 Вт составляет около 10 ГГц. Большинство мощных БТ СВЧ по структуре относится к n-p-n типу. По методу формирования переходов БТ СВЧ являются эпитакcиально-планарными. Все БТ СВЧ, кроме самых маломощных, имеют многоэмиттерную структуру (гребёнчатую, сетчатую). По мощности БТ СВЧ разделяются на маломощные (рассеиваемая мощность до 0,3 Вт), средней мощности (от 0,3 до 1,5 Вт) и мощные (свыше 1,5 Вт). Выпускается большое число узкоспециализированных типов БТ СВЧ.
Принцип действия транзистора
В активном режиме работы, транзистор включён так, что его эмиттерный переход смещён в прямом направлении (открыт), а коллекторный переход смещён в обратном направлении. Для определённости рассмотрим npn транзистор, все рассуждения повторяются абсолютно аналогично для случая pnp транзистора, с заменой слова «электроны» на «дырки», и наоборот, а также с заменой всех напряжений на противоположные по знаку.
В npn транзисторе электроны, основные носители тока в эмиттере проходят через открытый переход эмиттер-база в область базы. Часть этих электронов рекомбинирует с основными носителями заряда в базе (дырками), часть диффундирует обратно в эмиттер.
Однако, из-за того что базу делают очень тонкой и очень слабо легированной, большая часть электронов, инжектированная из эмиттера диффундирует в область коллектора. Сильное электрическое поле обратно смещённого коллекторного перехода захватывает электроны (напомним, что они неосновные носители в базе, поэтому для них переход открыт), и проносит их в коллектор. Ток коллектора, таким образом, практически равен току эмиттера, за исключением небольшой потери на рекомбинацию в базе, которая и образует ток базы (Iэ=Iб+Iк).
Коэффициент α, связывающий ток эмиттера и ток коллектора (Iк=α Iэ) называется коэффициентом передачи тока эмиттера. Численное значение коэффициента α 0.9 — 0.999, чем больше коэффициент, тем лучше транзистор. Этот коэффициент мало зависит от напряжения коллектор-база и база-эмиттер.
В широком диапазоне рабочих напряжений ток коллектора пропорционален току базы, коэффициент пропорциональности равен β=α/(1-α)=(10-1000). Т.о. изменяя малый ток базы можно управлять значительно большим током коллектора.
Биполярный транзистор – электропреобразовательный полупроводниковый прибор с одним или несколькими электрическими переходами, предназначенный для усиления, преобразования и генерации электрических сигналов. Вся конструкция выполняется на пластине кремния, либо германия, либо другого полупроводника, в которой созданы три области с различными типами электропроводности.
Средняя область называется базой, одна из крайних областей – эмиттером, другая – коллектором. Соответственно в транзисторе два p-n-перехода: эмиттерный – между базой и эмиттером и коллекторный – между базой и коллектором.
Область базы должна быть очень тонкой, гораздо тоньше эмиттерной и коллекторной областей (на рисунке это показано непропорционально). От этого зависит условие хорошей работы транзистора. Транзистор работает в трех режимах в зависимости от напряжения на его переходах.
При работе в активном режиме на эмиттерном переходе напряжение прямое, на коллекторном – обратное. В режиме отсечки на оба перехода подано обратное напряжение. Если на эти переходы подать прямое напряжение, то транзистор будет работать в режиме насыщения.
Типы биполярных транзисторов.