Простой усилитель звука самостоятельно

Как протекает ток по схеме

В начальный момент времени, при подключении питания, электролитический конденсатор С3 заряжается, и начинят питать коллектор и эмиттер транзистора VT1. А также ток проходит через делитель напряжения.
Делитель напряжения R1, R2 смещает базу VT1. Начинает течь ток смещения база-эмиттер (Б-Э), тем самым устанавливается рабочая точка УНЧ.

Когда входной сигнал поступает на клемму Х1, он проходит С1 и через делитель поступает на базу VT1 и частично уходит через эмиттер.

Входной сигнал притягивается коллектором VT1 и тем самым усиливается.

Та часть переменного сигнала, которая перешла на эмиттер транзистора, усиливается эмиттерными током. Он свободно проходит через С2, который в паре с R3 стабилизирует режим работы усилителя от перегрева и искажений.
В итоге входной сигнал усиленный коллекторно-эмиттерным (К-Э) током VT1 поступает на выход, то есть на динамическую головку BF1.

Как правильно создать усилитель звука

В первую очередь для сборки подобного прибора для колонок понадобятся инструменты, а также требуемые комплектующие элементы. Схемы простейших усилителей собираются посредством паяльника, обустроенного на опоре высокой степени устойчивости. Желательно применять определённые паяльные станции.

В процессе собственноручной сборки усилителя для осуществления тестирования соответствующей схемы, либо применения на протяжении непродолжительного периода времени, хорошим вариантом станет модель на проводе, однако для неё понадобится много свободного пространства для расположения комплектующих элементов.

Плата печатного типа выступает гарантией максимальной компактности прибора и удобного использования в будущем.

Востребованный и доступный по ценовой категории усилитель, предназначенный для наушников, либо небольших динамиков, изготавливается на основе микросхемы, представляющей управляющего небольшого размера блока с вшитыми комплектом команд для управления электросигналом.

К схеме с нужной микросхемой следует присоединить пару резисторов и, конечно же, конденсаторов. В общей сложности цена усилителя, собранного своими руками, окажется намного ниже стоимости аппаратуры, приобретённой в специализированном магазине, при этом ограничение функционала заключается в изменении громкости сигнала.

Не стоит забывать об особенностях усилителей одноканального назначения, самостоятельное изготовление которых осуществляется на основе, как схем TDA, так и их аналогов.

В зависимости от приобретённой микросхемы, а также мощности устройства повышается размер нужного радиатора. При сборке усилителя внутри корпусной части, нужно заблаговременно продумать место, предусмотренное под теплоотводом.

К ещё одной особенности создания усилителя собственными руками, как показано на фото, относится минимально потребляемая мощность, что даёт возможность применять упрощённый усилитель в машинах, в пути, либо дома. Некоторым простым усилителям достаточно всего несколько вольт.

Мощность, которая потребляется, напрямую зависит от необходимого уровня усиления сигнала. Звуковой усилитель с используемого плеера для необходимых наушников потребляет примерно 3 Вт.

Для изготовления схем неопытному радиолюбителю лучше использовать специальную программу, для которой файлы имеют требуемое расширение.

Собственноручное создание необходимой схемы возможно при наличии определённых знаний и желании экспериментировать с ними. В обратном случае, лучше скачивать файлы для быстрой сборки замены усилителя максимально низкой частотности.

Схема преобразователя для авто

  • Напряжение питания: 12,5 В (батарея авто)
  • Выходное напряжение: 40 В (1×15 витков и первичные 2×5 витков)

При испытаниях преобразователя подключите резистор сопротивлением 16 Ом и ток, потребляемый преобразователем, составит около 3 А, а ток протекающий через этот резистор будет 1,2 А. При этом рабочая частота инвертора: 55 кГц, сердечник трансформатора ETD44-3F3.

Почему всё собрано на транзисторах? Нет интегральных схем усилителей, имеющих мощность более 50 Вт, имеющих систему повышения напряжения. Даже TDA1560, TDA1562, TDA8571 не дадут равную мощность.

Но если уже есть преобразователь 12-220 Вольт, можете изменить его трансформатор и подключить к нему микросхему с более высокой мощностью, даже TDA7294 или любые другие, сняв по крайней мере 70 Вт.

Что касается 50 Вт, они получены с сопротивлением катушки громкоговорителя 8 Ом. Увеличьте напряжение до 55-60 В, усилитель должен справиться с этим, и мощность будет намного больше. Кроме того, вместо 2200 мкФ на выходе (для 8 Ом) дайте 4700 мкФ для 4 Ом.

На этих транзисторах схема выжмет и 100 Вт. Только надо преобразовать схему усилителя и преобразователи в более высокое напряжение. Радиаторы для тех 100 Вт также надо больше.

Как сделать автомобильный усилитель

Изготовить усилитель для автомобильных колонок своими руками может даже малоопытный радиолюбитель. Конечно, если нет практики, то начинать следует с простых устройств, выполненных на интегральных микросхемах. Транзисторные схемы, как правило, требуют более сложной настройки тогда, как интегральные системы при правильной сборке сразу начинают работать. Типовая схема простого усилителя звука для авто за исключением конденсаторов фильтра питания содержит всего один резистор.

Вместе с ёмкостью 47 мкф он должен обеспечивать плавную подачу питающего напряжения на 11 вывод микросхемы. В типовом варианте можно использовать разные микросхемы. Они отличаются между собой некоторыми параметрами, в том числе и уровнем входного сигнала. Так микросхеме TDA1557 требуется 50 mV, а на микросхему TDA1552 нужно подавать 500mV так, что для неё может потребоваться предварительный каскад. Сделать схему автомобильного усилителя своими руками можно и на транзисторах, но это будет несколько сложнее.

Усилитель звука для авто

Непременным условием установки самодельного усилителя в автомобиле является фильтр питания, позволяющий устранить помехи от работы системы зажигания и генератора. В конструкции чипа предусмотрена аварийная защита, предохраняющая конструкцию от короткого замыкания в выходном звуковом тракте и от перегрева. Допускается установка дополнительной системы, позволяющей включать контрольные светодиоды при возникновении неполадок в работе.

Последовательность действий при изготовлении автомобильного усилителя следующая:

  1. Разметить печатную плату будущего устройства в соответствии со схемой. Изделие изготавливается по лазерно-утюжной технологии (ЛУТ) или с помощью канцелярского штриха и маркера.
  2. Просверлить отверстия для установки электронных компонентов.
  3. Протравить плату в растворе хлорного железа (остатки реагента смываются водой). Покрыть поверхность дорожек слоем припоя с помощью паяльника.
  4. В дорожки подвода питания впаять медную проволоку, покрытую слоем припоя. Дополнительный материал снижает вероятность проседания напряжения питания в процессе работы усилителя. В цепь питания включается электролитический конденсатор емкостью 4500-5000 мкФ, рассчитанный на напряжение 16 В.
  5. Припаять остальные компоненты усилителя.
  6. Установить радиатор охлаждения, имеющий площадь в 15-20 раз больше площади микросхемы. Пластина крепится к чипу с помощью винта. Для улучшения теплообмена используется кремний-органическая паста. Если при работе оборудования будут отмечаться случаи перегрева, то необходимо установить радиатор с увеличенной площадью и дополнительными ребрами или смонтировать вентилятор, который подключается к общей цепи питания.
  7. Собрать фильтр питания, состоящий из 3 параллельно работающих конденсаторов номиналом 0,1 и 4700 мкФ. В схему входит катушка из 5 витков медного провода сечением 1-1,5 мм², накрученных на ферритовое кольцо диаметром 20 мм. В конструкции фильтра предусматривается плавкая вставка номиналом 7,5-10 А.
  8. Соединить оборудование в общую цепь и проверить работу изделий при разных режимах. При подключении питания не допускается ошибочная полярность, поскольку это приводит к выходу из строя микросхемы.

Альтернативные варианты конструкции

Если в гараже имеется старая магнитола Pioneer, то возможно изготовление самодельного устройства на базе микросхемы Mosfet Pal 007 (аналог чипа LA4347). В схеме предусматриваются конденсаторы для устранения посторонних шумов. Рабочее напряжение изделий составляет 16 В. Микросхема позволяет подключать 2 или 4 динамика (количество зависит от способа подключения дополнительных элементов). В конструкции используется алюминиевый радиатор, позаимствованный от магнитолы.

Усилитель на базе Philips TDA1562 оснащается комбинированной схемой питания. При повышении нагрузки активируется схема повышения напряжения питания, оснащенная конденсаторами номиналом 4700 мкФ. Конструкция микросхемы позволяет подключать низкочастотные громкоговорители, но для отвода излишков тепла требуется радиатор площадью не менее 400 см². Чип оборудован встроенной защитой от перегрева и коротких замыканий в выходном каскаде (в схеме предусматривается предупредительный световой индикатор неисправности).

Дополнительные советы

Чтобы не запутаться, рекомендуется пользоваться программой Sprint Layout. Она обладает следующими функциями:

  • проектирование схем слабой и средней степени сложности;
  • проектирование разводки;
  • просмотр моделей в трехмерном изображении;
  • возможность создания библиотеки деталей.

Можно скачать и установить русифицированную программу с дополненным функционалом бесплатно. Для этого следует искать 6 версию ПО (не официальную, а именно переведенную). Она совместима со всеми версиями англоязычной вплоть до пятой.

Программа поможет создать наглядные планы, куда более полезные в деле, чем фото самодельных усилителей звука и их схем.

Прошло время…

Усилитель работает и используется. Однако он не достигает полной мощности из-за слишком слабого преобразователя, все из-за трансформатора, у которого маленькое поперечное сечение сердечника. Планируется иметь больший трансформатор и хорошую обмотку, может даже тороидальные сердечники. Выходное напряжение инвертора при подключении к усилителю составляет 48 В, но с нагрузкой падает даже до 36 В, то есть происходит провал на басах.

Усилитель, преобразователь и блок управления тембром звука встроен в короб самодельного исполнения. Ящик изготовлен из белого мебельного ДСП толщиной 18 мм, всё соединено с помощью клея Викол и скручено шурупами для дерева. Короб имеет вместимость 34 литра и представляет собой корпус басс-рефлекс, отверстие + труба находится на высоте динамика в задней стенке. Коробка покрыта материалом для упаковки оборудования CarAudio. На задней стенке есть гнездо для подключения.

Каскадные схемы широкополосных

Каскадные схемы широкополосных усилителей на полевых и биполярных транзисторах, включенных последовательно по постоянному току, приведены на рис. 8 — 16 [А.Г. Милехин, Р 9/72-38].

В качестве динамической нагрузки полевого транзистора VT1 используется активный элемент — полевой или биполярный транзистор VT2, внутреннее сопротивление которого зависит от амплитуды сигнала на стоке транзистора VT1.

Рис. 8. Каскадная схема широкополосного усилителя на двух транзисторах КП103.

Рис. 9. Каскадная схема широкополосного усилителя на двух транзисторах КП103Ж.

Транзистор VT1 включен по схеме с общим истоком, транзистор VT2 — с общим стоком (рис. 8 — 10). При таком сочетании первый каскад имеет коэффициент усиления по напряжению близкий к единице, благодаря чему он обладает большим запасом устойчивости.

Рис. 10. Каскадная схема широкополосного усилителя на КП103М с ВЧ дросселем.

Кроме того, схема с общим истоком обладает значительным коэффициентом усиления по мощности, что способствует снижению шума двухкаскадного усилителя. Второй каскад, обладая большим коэффициентом устойчивого усиления, позволяет получить необходимое усиление по напряжению. 

Рис. 11. Каскадная схема широкополосного усилителя на КТ361 и КП103Ж.

Наиболее простая схема (рис. 5.8) содержит всего 5 элементов, включая переходные конденсаторы. Несколько усложненный вариант усилителя (с включением в цепь истока каждого полевого транзистора сопротивления смещения) показан на рис. 5.9.

Основные характеристики схемы (рис. 11) соответствуют аналогичным для схемы (рис. 9), коэффициент усиления по напряжению незначительно возрастает, но в целом схема заметно усложняется.

На рис. 12 показан пример практической реализации усилительного каскада, выполненного на основе полевого и биполярного транзисторов (см. также рис. 1).

Рис. 12. Каскадная схема широкополосного усилителя на КТ315 и КП303Г.

Рис. 13. Каскадная схема широкополосного усилителя на двух транзисторах.

Для расширения частотного диапазона входного сигнала в качестве сопротивления в цепи истока верхнего (по схеме на рис. 10) полевого транзистора дополнительно может быть включен высокочастотный дроссель — элемент, реактивное сопротивление которого возрастает с ростом частоты.

Коэффициент усиления каскада в области низких частот (рис. 8) при использовании полевых транзисторов типа КП103Ж достигает 40 дБ при низком уровне шумов.

Коэффициент усиления по напряжению в диапазоне низких частот (от 10 Гц до 10 кГц) каскада на рис. 9 составляет 130 . Максимальный выходной сигнал при напряжении питания 9 В может доходить до 1,4 В. Схема на рис. 11 имеет динамическую нагрузку полевого транзистора, в качестве которой применен биполярный транзистор.

Рис. 14. Каскадная схема широкополосного усилителя на трех транзисторах.

Рис. 15. Широкополосный усилитель на двух транзисторах КП103М и одном ГТ313В.

Рис. 16. Широкополосный усилитель на германиевом транзисторе и двух полевых.

В соответствии со сведениями, систематизированными в литературе [Р 9/72-38], можно привести сводную таблицу 1, характеризующую свойства каскадных усилителей в сопоставимых условиях измерения (для транзисторов КП103М), см. рис. 8 — 10, 13 — 16.

Таблица 1.

Усилители с общим истоком

  Усилители на полевых транзисторах (ПТ) обладают большим входным сопротивлением. Обычно такие усилители используются как первые каскады предварительных усилителей, усилителей постоянного тока измерительной и другой радиоэлектронной аппаратуры.
  Применение в первых каскадах усилителей с большим входным сопротивлением позволяет согласовывать источники сигнала с большим внутренним сопротивлением с последующими более мощными усилительными каскадами, имеющими небольшое входное сопротивление. Усилительные каскады на полевых транзисторах чаще всего выполняются по схеме с общим истоком.

  Так как напряжение смещения между затвором и истоком равно нулю, то режим покоя транзистора VT характеризуется положением точки А на сток-затворной характеристике при UЗИ=0 (рис. 15,б).
 В этом случае при поступлении на вход усилителя переменного гармонического (то есть синусоидального) напряжения UЗИ с амплитудой UmЗИ положительный и отрицательный полупериоды этого напряжения будут усиливаться неодинаково: при отрицательном полупериоде входного напряжения UЗИ амплитуда переменной составляющей тока стока I’mc будет больше, чем при положительном полупериоде (I»mc), так как крутизна сток-затворной характеристики на участке АВ больше по сравнению с крутизной на участке АС: Вследствие этого форма переменной составляющей тока стока и создаваемого им переменного напряжения на нагрузке UВЫХ будет отличаться от формы входного напряжения, то есть возникнут искажения усиливаемого сигнала.
Для уменьшения искажений сигнала при его усилении необходимо обеспечить работу полевого транзистора при постоянной крутизне его сток-затворной характеристики, то есть на линейном участке этой характеристики.
 С этой целью в цепь истока включают резистор Rи (рис.16,а).

Протекающий через резистор ток стока IС0 создает на нем напряжение
U=IС0Rи, которое прикладывается между истоком и затвором, включая ЭДП, образованный между областями затвора и истока, в обратном направлении. Это приводит к уменьшению тока стока и режим работы будет характеризоваться в этом случае точкой А’ (рис.16,б).

Чтобы не происходило уменьшения коэффициента усиления, параллельно резистору Rи подключают конденсатор Си большой емкости, который устраняет отрицательную обратную связь по переменному току, образуемую переменным напряжением на резисторе Rи. В режиме, характеризуемом точкой А’, крутизна сток-затворной характеристики при усилении переменного напряжения остается примерно одинаковой при усилении положительных и отрицательных полупериодов входного напряжения, вследствие чего искажения усиливаемых сигналов будут незначительны
(участки A’В’ и А’С’ примерно равны).
  Если в режиме покоя напряжение между затвором и истоком обозначить UЗИО, а протекающий через ПТ ток стока IС0, то сопротивление резистора Rи (в омах) можно рассчитать по формуле:
Rи =1000 UЗИО/IС0,   
в которую ток стока IС0 подставляется в миллиамперах.
  В схеме усилителя, приведенной на рис.15, используется ПТ с управляющим p-n-переходом и каналом р-типа. Если в качестве ПТ применяется аналогичный транзистор, но с каналом n-типа, схема остается прежней, а изменяется лишь полярность подключения источника питания.
    Еще большее входное сопротивление имеют усилители, выполненные на полевых МДП-транзисторах с индуцированным, или встроенным каналом. При постоянном токе входное сопротивление таких усилителей может превышать 100 МОм. Так как напряжения их затвора и стока имеют одинаковую полярность, для обеспечения необходимого напряжения смещения в цепи затвора можно использовать напряжение источника питания GC подключив его к делителю напряжения, включенному на входе транзистора таким образом, как показано на рис.17.

Работа в промежуточных классах

У каждого класса имеется несколько разновидностей. Например, существует класс работы усилителей «А+». В нем транзисторы на входе (низковольтные) работают в режиме «А». Но высоковольтные, устанавливаемые в выходных каскадах, работают либо в «В», либо в «АВ». Такие усилители намного экономичнее, нежели работающие в классе «А». Заметно меньшее число нелинейных искажений – не выше 0,003 %. Можно добиться и более высоких результатов, используя биполярные транзисторы. Принцип работы усилителей на этих элементах будет рассмотрен ниже.

Но все равно имеется большое количество высших гармоник в выходном сигнале, отчего звук становится характерным металлическим. Существуют еще схемы усилителей, работающие в классе «АА». В них нелинейные искажения еще меньше – до 0,0005 %. Но главный недостаток транзисторных усилителей все равно имеется – характерный металлический звук.

«Альтернативные» конструкции

  1. Очень низкое значение уровня нелинейных искажений в выходном сигнале.
  2. Высших гармоник меньше, чем в транзисторных конструкциях.

Но есть один огромный минус, который перевешивает все достоинства, – обязательно нужно ставить устройство для согласования. Дело в том, что у лампового каскада очень большое сопротивление – несколько тысяч Ом. Но сопротивление обмотки динамиков – 8 или 4 Ома. Чтобы их согласовать, нужно устанавливать трансформатор.

Конечно, это не очень большой недостаток – существуют и транзисторные устройства, в которых используются трансформаторы для согласования выходного каскада и акустической системы. Некоторые специалисты утверждают, что наиболее эффективной схемой оказывается гибридная – в которой применяются однотактные усилители, не охваченные отрицательной обратной связью. Причем все эти каскады функционируют в режиме УНЧ класса «А». Другими словами, применяется в качестве повторителя усилитель мощности на транзисторе.

Причем КПД у таких устройств достаточно высокий – порядка 50 %. Но не стоит ориентироваться только на показатели КПД и мощности – они не говорят о высоком качестве воспроизведения звука усилителем. Намного большее значение имеют линейность характеристик и их качество

Поэтому нужно обращать внимание в первую очередь на них, а не на мощность

Как питаемся схема

От качества питания зависит и качество усиления. С какими бы выдающимися характеристиками не был транзистор, если питание плохо отфильтровано или недостаточное, то усиление будет советующего качества.

На клеммы Х3 и Х4 подключается питание 6 В.

Эта схема может питаться и от аккумулятора. Однако, несмотря на то, что аккумулятор – это источник с минимальным шумом, у аккумулятора тоже есть свое сопротивление.

И чтобы оно не мешало и не влияло на работу усилителя, нужен сглаживающий и накопительный конденсатор.

Электролитический конденсатор С3 накапливает энергию источника питания, что позволяет улучшить качество усиления. Чем выше емкость – тем лучше. Естественно, у такого правила есть ограничения. Если поставить слишком большую емкость, то будет большая нагрузка на источник питания.

К тому же, электролитические конденсаторы должны разряжаться после выключения. Тем более, есть предел для увеличения емкости для схемы. Если в эту схему подключить конденсатор емкостью 1 фарад (1 000 000 мкФ), то уровень шума на выходе усилителя будет такой же, как и при 1000 мкФ. Это связано с тем, что у транзистора так же есть и свои «шумы», отсутствие экранировки на входе, динамические искажения и другие параметры.

Во время проектирования схемы все эти параметры рассчитываются. Здесь в схеме у конденсатора С3 емкость 47 микрофарад – этого достаточно для нашего транзистора, поскольку у него не большая мощность, которую он может выдать. Можно поставить и большую емкость, например, 1000 микрофарад. Главное не нежно ставить конденсатор с меньшим пределом по напряжению. Если поставить конденсатор менее 6 В (питание схемы), то конденсатор начнет нагреваться и даже может взорваться.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector