Рефлектор (телескоп)
Содержание:
- Крупнейшие телескопы
- Как из стекла сделать зеркало?
- Идея Кассегрена
- Зеркально-линзовые телескопы
- Крупнейшие телескопы
- Конструкция рефлектора Ньютона
- Последовательность изготовления параболического зеркала своими руками
- Крупнейшие оптические телескопы[ | ]
- Основные оптические системы зеркальных телескопов
- Как украсить зеркало своими руками?
- Параболическое зеркало своими руками: немного теоретической подготовки
- Как сделать рефлектор Ньютона своими руками
- Рефрактор или рефлектор?
- Радиотелескопы
- Телескопы рефлекторы
Крупнейшие телескопы
Сравнение зеркал крупнейших телескопов, включая строящиеся
Телескопы Кека
Крупнейший в Евразии телескоп — БТА — находится на территории России, в горах Северного Кавказа, и имеет диаметр главного зеркала 6 м. Он работает с 1976 года и долго был крупнейшим телескопом в мире.
Крупнейший в мире телескоп с цельным зеркалом — Большой бинокулярный телескоп, расположенный на горе Грэхэм (США, штат Аризона) и работающий с 2005 года. Диаметр обоих зеркал — 8,4 метра
11 октября 2005 года в эксплуатацию был запущен Большой южноафриканский телескоп в ЮАР с главным зеркалом размером 11×9,8 метров, состоящим из 91 одинакового шестиугольника.
13 июля 2007 года первый свет увидел Большой Канарский телескоп с диаметром зеркала 10,4 м (36 шестиугольных сегментов). Это самый большой оптический телескоп в мире по состоянию на первую половину 2009 года.
В современных составных рефлекторах с середины 1990-х годов используются деформируемые зеркала (англ.) и адаптивная оптика, что позволяет компенсировать атмосферные искажения. Это стало прорывом в телескопостроении и позволило значительно повысить качество работы наземных телескопов.
В октябре 2021 запланировано получить первый свет на Большом обзорным телескопе, а в октябре 2022 начать работу. В 2025 году планируется получить первый свет с Чрезвычайно большого телескопа, а в 2027 году — начать научные наблюдения на международном Тридцатиметровом телескопе. В 2029 году планируется ввод в эксплуатацию Гигантского Магелланова телескопа.
Как из стекла сделать зеркало?
Многие задумываются, как из стекла сделать зеркало. Изготовление в домашних условиях — вещь не сложная, но требует не только особых знаний в отрасли химии, но и специальных материалов и денежных средств.
Пошаговая инструкция, как из стекла сделать зеркало:
- Для начала стекло с двух сторон протирается ацетоном, чтобы убрать жирные пятна и загрязнения. Стекло должно немного отлежаться, чтобы восстановить свою температуру.
- Дальше при помощи распылителя наносится эффект хрома. Нужно сделать порядка шести проходов. Заготовка должна подсохнуть минимум 8 часов, но не больше суток.
- Когда хром высох, распылителем наносится водная эмаль «Серебро» (GO 05 V550) с добавлением 4% кросслинкера (YCM419), благодаря которому данный материал может наноситься даже на керамическую плитку. Мы сделали зеркало полупрозрачным.
- Чтобы стекло не просвечивало, нужно сделать основу, куда приклеится зеркало.
- Последний этап — декор. Украшаем зеркало поделками из бумаги, бисера, бусинок и прочих подручных материалов. Надежнее, конечно, сделать основу из дерева.
Зеркальную поверхность можно получить также из фольги, но это будет лишь имитация под зеркало.
Идея Кассегрена
Похожую систему предложил в 1672 году Лоран Кассегрен. В основу его разработки также легли два зеркала разного диаметра. Однако Лоран предпочел работать с прямым отображением света, сведя всю конструкцию к передаче световых пучков между двумя стеклами.
Отличительной особенностью его телескопа стал тот факт, что вторичное зеркало было существенно больше главного. Спустя двести лет, именно эту идею возьмет за основу знаменитый советский оптик Д. Д. Маскутов, который заложит фундаментальные основы российской науки об оптических приборах, а также изобретет основную модель телескопа, которая станет базовой для всех приборов, имеющих отношение к приближению изображения в Советском Союзе.
Следующие системы, подобные разработке Ричи – Кретьена являются всего лишь дополненными и исправленными версиями идей Кассегрена.
Зеркально-линзовые телескопы
Зеркально-линзовый телескоп предназначен для фотографирования больших областей неба. Его изобрел в 1929 немецкий оптик Б. Шмидт. Главными деталями здесь являются сферическое зеркало и Шмидта коррекционная пластинка, установленная в центре кривизны зеркала. Благодаря такому положению коррекционной пластинки все пучки лучей, проходящие через неё от разных участков неба, оказываются равноправными по отношению к зеркалу, вследствие чего телескоп свободен от аберраций оптических систем. Сферическая аберрация зеркала исправляется коррекционной пластинкой, центральная часть которой действует как слабая положительная линза, а внешняя — как слабая отрицательная линза. Фокальная поверхность, на которой образуется изображение участка неба, имеет форму сферы, радиус кривизны которой равен фокусному расстоянию. Фокальная поверхность может быть преобразована в плоскую с помощью Пиацци — Смита линзы.
Недостатком зеркально-линзовых телескопов является значительная длина трубы, вдвое превышающая фокусное расстояние телескопа. Для устранения этого недостатка предложен ряд модификаций, в том числе применение второго (дополнительного) выпуклого зеркала, приближение коррекционной пластинки к главному зеркалу и др.Крупнейшие телескопы Шмидта установлены на Таутенбургской астрономической обсерватории в ГДР (D= 1,37м, А = 1:3), Маунт-Паломарской астрономической обсерватории в США (D = 1,22 м, А = 1:2,5) и на Бюраканской астрофизической обсерватории АН Армянской ССР (D = 1,00 м, А = 1:2, 1:3).
Крупнейшие телескопы
Телескопы Кека
Крупнейший в Евразии телескоп — БТА — находится на территории России, в горах Северного Кавказа, и имеет диаметр главного зеркала 6 м. Он работает с 1976 года и долго был крупнейшим телескопом в мире.
Крупнейший в мире телескоп с цельным зеркалом — Большой бинокулярный телескоп, расположенный на горе Грэхэм (США, штат Аризона) и работающий с 2005 года. Диаметр обоих зеркал — 8,4 метра
11 октября 2005 года в эксплуатацию был запущен Большой южноафриканский телескоп в ЮАР с главным зеркалом размером 11×9,8 метров, состоящим из 91 одинакового шестиугольника.
13 июля 2007 года первый свет увидел Большой Канарский телескоп с диаметром зеркала 10,4 м (36 шестиугольных сегментов). Это самый большой оптический телескоп в мире по состоянию на первую половину 2009 года.
В современных составных рефлекторах с середины 1990-х годов используются деформируемые зеркала (англ.) и адаптивная оптика, что позволяет компенсировать атмосферные искажения. Это стало прорывом в телескопостроении и позволило значительно повысить качество работы наземных телескопов.
В 2024 году в эксплуатацию будет запущен Гигантский Магелланов телескоп. В конце 2024 года должен заработать Чрезвычайно большой телескоп, а в 2027 году начнет научные наблюдения международный Тридцатиметровый телескоп.
Конструкция рефлектора Ньютона
Рефлектор Ньютона по конструкции относится к зеркальным телескопам, то есть роль объектива в нём выполняет вогнутое зеркало. Это даёт сразу несколько преимуществ, если сравнивать такую конструкцию с другой – телескопом – рефрактором, то есть линзовым:
- Зеркало гораздо проще изготовить, чем линзу, тем более, что для качественного линзового объектива требуется несколько высококачественных линз. Зеркало нужно всего одно.
- Требования к стеклу для зеркала гораздо ниже – главное, чтобы оно выдерживало механические нагрузки от своего веса и температурных колебаний. Для линзы же требуется высококачественное оптическое стекло, без всяких дефектов. Для зеркала же прозрачность стекла, наличие в его толще мелких дефектов, значения не имеет.
- При равном диаметре объектива рефлектор Ньютона гораздо компактнее рефрактора. Например, труба рефрактора с объективом 150 мм была бы длиной более 2 метров, и стоила бы очень дорого, не говоря уже про астрономическую стоимость такого объектива и мощной монтировки. Рефлектор же такого диаметра вдвое короче, намного меньше, а стоимость зеркала вполне доступна.
- Зеркальный телескоп даёт лучшее изображение, ведь в рефракторе происходит преломление света, а в рефлекторе – всего лишь отражение. Поэтому рефлектор практически свободен от многих аберраций, например, хроматических – когда вокруг объекта возникает цветная кайма, и даёт более резкое и качественное изображение.
- Зеркало может отражать свет практически любой длины, в том числе и ультрафиолет, что оказывается важным для наблюдений и фотографии. В рефракторе свет проходит через линзу, и большая часть спектра просто теряется, в том числе и ультрафиолетовая.
- Такой телескоп имеет большую светосилу, что позволяет делать более четкие и качественные фотографии.
- В силу конструкции у рефлектора Ньютона окуляр расположен сбоку, что позволяет проводить наблюдения с большим удобством. Рефрактор может оснащаться оборачивающей призмой, но это лишнее препятствие на пути света, увеличивающее его потери, да и удобство это относительное.
- Конструктивно телескоп состоит из главного зеркала сферической или параболической формы, и вторичного плоского зеркала, которое просто выводит сфокусированный пучок наружу из трубы, где расположен окуляр для наблюдения.
Главное зеркало располагается на специальной площадке, снабженной юстировочными винтами для регулировки его наклона. Вторичное плоское зеркало расположено на растяжках вблизи переднего конца трубы. В телескопе, таким образом, происходит всего два отражения.
Окуляр снабжается фокусером для плавной регулировки резкости.
Рефлектор Ньютона – довольно дешевый телескоп по сравнению с аналогичным по диаметру объектива рефрактором. Разница в цене может достигать нескольких раз, а в более крупных моделях аналогов и вовсе нет. Например, самыми популярными рефракторами можно считать модели с диаметром объектива 50-80 мм, с диаметром 90 мм они имеют довольно значительную цену.
При этом рефлектор Ньютона с диаметром зеркала 110 — 150 мм вполне доступен практически любому любителю астрономии. Многие любители имеют в своем арсенале и 200-мм модели, которые относятся уже к профессиональному классу. Рефрактор такого диаметра можно встретить разве что в обсерватории, в продаже их нет.
Последовательность изготовления параболического зеркала своими руками
Прежде чем конструировать модель промышленных размеров, лучше потренироваться, сделав своими руками параболическое зеркало небольшого диаметра. При минимуме затрат вы получите пользу в виде действующей конструкции и отработки возможных ошибок.
- Основой будущего параболического зеркала может стать пластиковая посуда небольшого размера, например, глубокая тарелка или миска, внутренняя поверхность которой имеет выпуклую форму.
- Края выбранной посуды покрывают слоем быстродействующего клея типа «Момент».
- На обработанную клеем поверхность укладывают покрывающий слой пленки. Сделать это лучше следующим образом: фрагмент пленки диаметром, превышающим размеры тарелки, укладывается на стол зеркальной стороной вниз, а посуда кладется сверху и надежно придавливается грузом для быстрой фиксации поверхностей.
- Необходимо выждать, чтобы пленка надежно приклеилась к посуде.
- Теперь получившаяся емкость полностью герметична, напоминает стаканчик йогурта с припаянной сверху крышкой из фольги. Чтобы заставить отражающую пленку принять нужную форму и ровно покрыть внутреннюю поверхность тарелки, необходимо откачать воздух из внутреннего пространства. Для этого подойдет обычный велосипедный насос. Просверлив небольшое отверстие в тарелке, в него вставляется золотник, который фиксируется универсальным клеем. Вставлять золотник нужно обратной стороной, поскольку требуется не накачать, а выкачать воздух из внутренней емкости.
- По мере удаления воздуха образующийся внутри вакуум надежно притягивает пленку к стенкам тарелки.
Конструкция компактного параболического зеркала готова. Остается аккуратно снять насос и заделать отверстие под золотник. Испытать изделие можно в ближайший солнечный день, разместив небольшую металлическую емкость с холодной водой в расчетной точке концентрации солнечного света. Следите, чтобы параболическое зеркало было направлено на светило – это ускорит процесс кипячения. И не забывайте о технике безопасности, своевременно убрав от полезной конструкции легкоплавкие предметы и воспламеняющиеся жидкости.
Крупнейшие оптические телескопы[ | ]
Телескопы-рефракторы
Обсерватория | Местонахождения | Диаметр, см / дюйм | Год сооружения / демонтажа | Примечания |
Телескоп всемирной Парижской выставки 1900 года. | Париж | 125 / 49.21″ | 1900 / 1900 | Самый крупный рефрактор в мире, из когда либо построенных. Свет от звёзд направлялся в объектив неподвижного телескопа с помощью сидеростата. |
Йеркская обсерватория | Уильямс Бэй, Висконсин | 102 / 40″ | 1897 | Крупнейший рефрактор в мире 1897—1900 гг. После демонтажа телескоп всемирной Парижской выставки 1900 года снова стал крупнейшим из эксплуатируемых рефракторов. Рефрактор Кларка. |
Обсерватория Лика | гора Гамильтон, Калифорния | 91 / 36″ | 1888 | |
Парижская обсерватория | Медон, Франция | 83 / 33″ | 1893 | Двойной, визуальный объектив 83 см, фотографический — 62 см. |
Потсдамский астрофизический институт | Потсдам, Германия | 81 / 32″ | 1899 | Двойной, визуальный 50 см, фотографический 80 см. |
Обсерватория Ниццы | Франция | 76 / 30″ | 1880 | |
Пулковская обсерватория | Санкт-Петербург | 76 / 30″ | 1885 | |
Обсерватория Аллегейни | Питтсбург, Пенсильвания | 76 / 30″ | 1917 | Рефрактор Thaw |
Гринвичская обсерватория | Гринвич, Великобритания | 71 / 28″ | 1893 | |
Гринвичская обсерватория | Гринвич, Великобритания | 71 / 28″ | 1897 | Двойной, визуальный 71 см, фотографический 66 |
Обсерватория Архенхольда | Берлин, Германия | 70 / 27″ | 1896 | Самый длинный современный рефрактор |
Солнечные телескопы
Обсерватория | Местонахождения | Диаметр, м | Год сооружения |
Китт-Пик | Тусон, Аризона | 1,60 | 1962 |
Сакраменто-Пик | Санспот, Нью-Мексико | 1,50 | 1969 |
Крымская астрофизическая обсерватория | Крым | 1,00 | 1975 |
Шведский солнечный телескоп | Пальма, Канары | 1,00 | 2002 |
Китт-Пик, 2 штуки в общем корпусе с 1,6 метра | Тусон, Аризона | 0,9 | 1962 |
Тейде | Тенерифе, Канары | 0,9 | 2001 |
Саянская солнечная обсерватория, Россия | Монды, Бурятия | 0,8 | 1975 |
Китт-Пик | Тусон, Аризона | 0,7 | 1973 |
Институт физики Солнца, Германия | Тенерифе, Канары | 0,7 | 1988 |
Митака | Токио, Япония | 0,66 | 1920 |
Камеры Шмидта
Обсерватория | Местонахождения | Диаметр коррекционной пластины — зеркала, м | Год сооружения |
Обсерватория Карла Шварцшильда | Таутенбург, Германия | 1,3-2,0 | 1960 |
Паломарская обсерватория | гора Паломар, Калифорния | 1,2-1,8 | 1948 |
Обсерватория Сайдинг-Спринг | Кунабарабран, Австралия | 1,2-1,8 | 1973 |
Токийская астрономическая обсерватория | Токио, Япония | 1,1-1,5 | 1975 |
Европейская южная обсерватория | Ла-Силья, Чили | 1,1-1,5 | 1971 |
Телескопы-рефлекторы
Название | Местонахождения | Диаметр зеркала, м | Год сооружения |
Гигантский южно-африканский телескоп, SALT | Сатерленд, ЮАР | 11 | 2005 |
Большой Канарский телескоп | Пальма, Канарские острова | 10,4 | 2002 |
Телескопы Кек | Мауна-Кеа, Гавайи | 9,82 × 2 | 1993, 1996 |
Телескоп Хобби-Эберли, HET | Джефф-Дэвис, Техас | 9,2 | 1997 |
Большой бинокулярный телескоп, LBT | гора Грэхем (англ.), Аризона | 8,4 × 2 | 2004 |
Очень большой телескоп, ESO VLT | Серро Параналь, Чили | 8,2 × 4 | 1998, 2001 |
Телескоп Субару | Мауна-Кеа, Гавайи | 8,2 | 1999 |
Телескоп Северный Джемини, GNT | Мауна-Кеа, Гавайи | 8,1 | 2000 |
Телескоп Южный Джемини, GST | Серро Пашон, Чили | 8,1 | 2001 |
Мультизеркальный телескоп (англ.), MMT | гора Хопкинс (англ.), Аризона | 6,5 | 2000 |
Магеллановы телескопы | Лас Кампанас, Чили | 6,5 × 2 | 2002 |
Большой телескоп азимутальный, БТА | гора Пастухова, Россия | 6,0 | 1975 |
Большой Зенитный телескоп, LZT | Мейпл Ридж, Канада | 6,0 | 2001 |
Телескоп Хейла, MMT | гора Паломар, Калифорния | 5,08 | 1948 |
Экстремально большие телескопы
Основная статья: ELT
(Экстремально большой телескоп)
Название | Изображение (рисунок) | Диаметр (м) | Площадь (м²) | Главное зеркало | Высота м | Дата первого света |
Европейский чрезвычайно большой телескоп (E-ELT) | 39 | 1116 м² | 798 × 1,45 м шестиугольных сегментов | 3060 | 2024 год | |
Тридцатиметровый телескоп (TMT) | 30 | 655 м² | 492 × 1,45 м шестиугольных сегментов | 4050 | 2022 год | |
Гигантский Магелланов телескоп (GMT) | 24,5 | 368 м² | 7 × 8,4 м | 2516 | 2021 год |
Основные оптические системы зеркальных телескопов
Оптический телескоп — это система, состоящая из объектива и окуляра. Задняя фокальная плоскость первого совмещена с передней фокальной плоскостью второго. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом. Оптические системы зеркальных телескопов разделяются по типам используемых объективов.
Система Ньютона
Оптическая схема телескопа Ньютона
Такую схему телескопов изобрёл Исаак Ньютон в 1668 году. Здесь главное зеркало направляет свет на небольшое плоское диагональное зеркало, расположенное вблизи фокуса. Оно, в свою очередь, отклоняет пучок света за пределы трубы, где изображение рассматривается через окуляр или фотографируется. Главное зеркало параболическое, но, если относительное отверстие не слишком большое, оно может быть и сферическим.
Система Грегори
Оптическая схема телескопа Грегори
Эту конструкцию предложил в 1663 году Джеймс Грегори в книге Optica Promota. Главное зеркало в таком телескопе — вогнутое параболическое. Оно отражает свет на меньшее вторичное зеркало (вогнутое эллиптическое). От него свет направляется назад — в отверстие по центру главного зеркала, за которым стоит окуляр. Расстояние между зеркалами больше фокусного расстояния главного зеркала, поэтому изображение получается прямое (в отличие от перевёрнутого в телескопе Ньютона). Вторичное зеркало обеспечивает относительно большое увеличение благодаря удлинению фокусного расстояния.
Система Кассегрена
Оптическая схема телескопа Кассегрена
Схема была предложена Лораном Кассегреном в 1672 году. Это вариант двухзеркального объектива телескопа. Главное зеркало большего диаметра (вогнутое; в оригинальном варианте параболическое) отбрасывает лучи на вторичное выпуклое меньшего диаметра (обычно гиперболическое). По классификации Максутова схема относится к так называемым предфокальным удлиняющим — то есть вторичное зеркало расположено между главным зеркалом и его фокусом и полное фокусное расстояние объектива больше, чем у главного. Объектив при том же диаметре и фокусном расстоянии имеет почти вдвое меньшую длину трубы и несколько меньшее экранирование, чем у Грегори. Система неапланатична, то есть несвободна от аберрации комы. Имеет большое число как зеркальных модификаций, включая апланатичный Ричи — Кретьен, со сферической формой поверхности вторичного (Долл — Кирхем) или первичного зеркала, так и зеркально-линзовых.
Отдельно стоит выделить систему Кассегрена, модифицированную советским оптиком Д. Д. Максутовым — , ставшую одной из самых распространённых систем в астрономии, особенно в любительской.
Система Ричи — Кретьена
Основная статья: Система Ричи — Кретьена
Оптическая схема телескопа Ричи — Кретьена — Кассегрена
Система Ричи — Кретьена является усовершенствованием системы Кассегрена. Главное зеркало тут не параболическое, а гиперболическое. Поле зрения этой системы — около 4°.
Система Гершеля (Ломоносова)
Оптическая схема телескопа Гершеля
Ещё в 1616 году Н. Цукки предложил заменить линзу вогнутым зеркалом, наклонённым к оптической оси телескопа. Подобный телескоп-рефлектор был сконструирован Уильямом Гершелем в 1772 году (на 10 лет раньше данную оптическую схему реализовал М. В. Ломоносов). В нём первичное зеркало имеет форму внеосевого параболоида и наклонено так, что фокус находится вне главной трубы телескопа, и наблюдатель не закрывает собой поступающий свет. Недостатком такой схемы является большая кома, но при малом относительном отверстии она почти незаметна.
Система Корша
Один из вариантов трёхзеркального анастигмата, с более общим набором решений, разработанный Дитрихом Коршем в 1972 году. У телескопа Корша скорректированы сферическая аберрация, кома, астигматизм и кривизна поля, также он может иметь широкое поле зрения, гарантируя при этом, что в фокальной плоскости будет лишь немного рассеянного света.
Брахиты
Оптическая схема брахита
В такой схеме вторичное зеркало вынесено за пределы пучка, падающего на главное зеркало. Такая конструкция сложна в изготовлении, так как требует внеосевых параболического и гиперболического зеркал. Однако при малых апертуре и относительном отверстии эти зеркала можно заменить на сферические. Кома и астигматизм главного зеркала компенсируются наклонами вторичного зеркала. К положительным качествам брахитов можно отнести отсутствие экранирования, что положительно сказывается на чёткости и контрастности изображения. Данная система была впервые применена в 1877 году И. Форстером и К. Фричем. Существуют различные конструкции брахитов.
Как украсить зеркало своими руками?
Зеркало является неотъемлемой частью любого дома. Преобразить его скучную форму в центральную композицию интерьера можно, задекорировав собственноручно.
Идеи, как украсить зеркало своими руками:
- Любителям неординарных идей можно посоветовать задекорировать раму лакированными пробками из дерева. Смело будут смотреться на оправе розы, сделанные из ячеек из-под яиц.
- Оформить рамку можно прутьями с куста, скрученными в виде гнезда и украшенными бабочками.
- Обрамление возможно сделать даже одноразовыми ложками, которые клеятся на картонную круглую заготовку в виде лепестков цветка.
- Любителям сладостей советуем сделать оформление рам конфетными тросточками.
- Вторую жизнь старому зеркалу подарит украшение цветочным орнаментом из суперпластика.
- Ценители металла точно оценят отделку зеркальной рамы скобами для степлера, старыми ключами или авторской ковкой.
- Оформление рамы в багет (потолочный плинтус) придаст изделию необычный дизайн в стиле барокко.
- К Новому году зеркальную поверхность можно украсить игрушками на елку или обрамить рождественским венком. Оригинально будет смотреться рисунок красками на новогоднюю тематику.
Параболическое зеркало своими руками: немного теоретической подготовки
Внешне параболическое зеркало напоминает спутниковую тарелку, внутренняя поверхность которой изготовлена из фрагментов зеркал. Попадающий на нее солнечный свет полностью отражается. При этом угол падения равен углу отражения, поэтому отраженный поток света концентрируется в одной точке на небольшом расстоянии от конструкции. Несложные расчеты, касающиеся диаметра и угла наклона стенок зеркала, позволяют увеличить температуру в месте схождения лучей до 2000° С. Этого вполне достаточно, чтобы приготовить вкусное и ароматное мясное блюдо на несколько человек в небольшой металлической кастрюле.
Ложка дегтя в огромной бочке меда от солнечной печи – проблема сборки зеркальной поверхности. Отдельные фрагменты здесь неприемлемы: их будет непросто разместить под одинаковым углом на выпуклой емкости конструкции. А многочисленные швы и стыки ослабляют отраженный солнечный поток, что дает уменьшение объема полученной тепловой энергии. При конструировании сборных параболических зеркал значительных размеров такой проблемы не возникает, т.к. на большой поверхности работать проще. А вот при попытке создать небольшую модель приходится либо собирать тарелку из отдельных зеркальных фрагментов, либо использовать вакуумную технологию наклеивания отражающей пленки.
Как подключить холодильник к солнечной батарее? Практические советы, проверенные опытом
Как сделать рефлектор Ньютона своими руками
Сейчас рефлектор Ньютона можно легко купить в магазине, притом за сравнительно небольшие деньги можно получить самую разную конфигурацию, которая позволит увидеть многие космические объекты.
Однако при желании и настойчивости можно сделать рефлектор Ньютона своими руками. Дело это, конечно, кропотливое, но зато можно получить в свое распоряжение достаточно мощный телескоп, стоимость которого в магазине составляет десятки, а то и сотни тысяч рублей. Например, вполне успешно при некотором опыте любители создавали для домашних обсерваторий 200 и 250-мм телескопы.
Создание качественной оптики и механики требует не только материалов, но и знаний. Поэтому желающим самостоятельно сделать рефлектор Ньютона рекомендуем книгу Навашина М.С. «Телескоп астронома-любителя» и книгу Л.Л. Сикорука «Телескопы для любителей астрономии». В них можно найти не только массу теории, но и практически пошаговые инструкции по созданию телескопа. Кстати, в книге Сикорука Л.Л. рассматриваются и другие, более сложные системы, которые также можно создавать самостоятельно.
Зачем это нужно сейчас, когда можно все купить в магазине? Причины могут быть разные – от простой экономии до чисто практического интереса. В конце-концов, телескоп, созданный своими руками, под собственные требования, может оказаться ничем не хуже покупного, а приобретенные навыки точно лишними не будут.
Рефрактор или рефлектор?
Исторически почему-то сложилось мнение, что «настоящий» телескоп – это все-же рефрактор, то есть привычная всем линзовая конструкция. Почему так, ведь по многим параметрам рефлектор не уступает рефрактору, а кое в чем даже превосходит? Может быть, потому, что рефрактор исторически появился раньше. Может, потому что это подобие подзорной трубы, которая была довольно известна и популярна в свое время. А может – потому что производители всегда выпускали в основном рефракторы, а удел рефлекторов был – кустарное изготовление, поэтому они считались чем-то вроде отщепенцев в обществе телескопов.
Теперь ситуация изменилась – можно легко приобрести как рефрактор, так и рефлектор, притом одинаково высокого качества. Вот здесь и встает неоднозначный вопрос – какой телескоп лучше?
Здесь надо заметить, что многое зависит от того, что именно планируется наблюдать. А также немалую роль могут сыграть личные предпочтения. Но подойдем к вопросу более серьезно и посмотрим, для чего лучше подойдет рефрактор, а для чего рефлектор.
Радиотелескопы
Они используются для исследования космических объектов в радиодиапазоне. Основными элементами радиотелескопов являются принимающая антенна и радиометр — чувствительный радиоприемник и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона.При объединении в единую сеть нескольких одиночных телескопов, расположенных в разных частях земного шара, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети.Российский орбитальный радиотелескоп Радиоастрон планируется использовать в качестве одного из элементов гигантского интерферометра.
Телескопы рефлекторы
Большинство любительских телескопов-рефлекторов имеет фокальные отношения f/6 — f/8; по сравнению с рефракторами они удобнее при наблюдениях, для которых требуются более широкое поле зрения и меньшее увеличение.
Телескопы-рефлекторы бывают разных типов. В практике любительских наблюдений чаще всего используются рефлекторы двух типов: системы Ньютона и системы Кассегрена.
В телескопе системы Ньютона вторичное зеркало плоское, поэтому фокусное расстояние и фокальное отношение объектива постоянны. В телескопе системы Кассегрена вторичное зеркало выпуклое, что значительно увеличивает общее фокусное расстояние телескопа и тем самым изменяет его эффективное фокальное отношение. По этой причине рефлекторы системы Кассегрена находят применение при наблюдениях того же типа, что и телескопы-рефракторы.
Телескоп типа рефлектор
Самое большое преимущество рефлекторов — их низкая стоимость. При той же апертуре они значительно дешевле телескопов любого другого типа. Кроме того, нужное зеркало для объектива рефлектора можно изготовить собственными силами или в крайнем случае — просто купить, а трубу такого телескопа нетрудно собрать в домашних условиях.
Практически все любительские телескопы с большой собирающей поверхностью (диаметры объектива свыше 200 мм) являются рефлекторами. Минимальный диаметр объектива рефлекторов, которые обычно используют для общих наблюдений, составляет около 150 мм; такой рефлектор стоит не дороже рефрактора с объективом диаметром 75 мм. Поскольку рефлектор имеет большую собирающую поверхность, в него можно наблюдать более слабые объекты, однако он не столь компактен, как рефрактор.
Рефлекторы меньших размеров, имеющие малые фокальные отношения, по своим характеристикам занимают промежуточное положение между биноклями и обычными рефлекторами; к тому же они достаточно компактны.
Однако у рефлекторов есть и недостатки. Наиболее существенные из них — необходимость время от времени обновлять отражающие, покрытия и юстировать оптические элементы. При отсутствии дорогостоящего оптического стекла, герметически закрывающего трубу рефлектора, приходится укрывать каждое зеркало телескопа крышкой или чехлом, чтобы воспрепятствовать проникновению пыли.
При наблюдениях окуляр в телескопе системы Ньютона может оказаться в неудобном положении; чтобы избежать этого, следует предусмотреть возможность вращения трубы телескопа.
Если труба рефлектора не закрыта герметически оптическим окном, то холодный наружный воздух, проникая в нее, создает там воздушные потоки, ухудшающие изображение. Весьма эффективным средством борьбы с этим недостатком может быть использование больших теплоизоляционных труб, но чаще для этой цели применяют «трубы» скелетной конструкции.
К сожалению, в последнем случае возникают другие проблемы, связанные с потоками теплого воздуха от самого наблюдателя (так что при наблюдениях старайтесь одевать больше теплоизолирующей одежды!). Кроме того, при этом увеличивается выпадение росы на оптические элементы. Поэтому большое значение приобретает правильная конструкция самой обсерватории.
Катадиоптрический (зеркально-линзовый) телескоп