Варистор, варисторная защита

Принцип действия варистора

Симметричность нелинейной характеристики по показателям вольтамперности определяет основную особенность варистора. Возможность работы при токах постоянного и переменного вида видна по форме данного параметра. В схематическом виде это выглядит следующим образом.

Ток утечки, проходящий через прибор, имеет предельно низкую величину. В данном случае речь идет об имеющем фиксированную емкость диэлектрическом компоненте не пропускающем через себя ток. При этом, в некоторых ситуациях прохождение тока становится возможным, если напряжение резко меняется в диапазоне ±60 Вольт.

Все происходящее во многом аналогично функционированию разрядника. Отличие в том, что результатом становится резкая перемена напряжения, а не возникновение разряда дугового типа. Скачок от нескольких единиц до тысяч Ампер происходит для параметров тока при снижении напряжения. На схеме варистор обычно изображается так:

Графически все это напоминает стандартный резистор с линией, которая перечеркивает его по диагонали. Иногда на нее наносят символ U. Поиск данного компонента на схемах и платах производится при помощи обозначений VA и RU.

Защита определенной цепи происходит при параллельном варианте подключения варистора. Резкий импульс изменения рабочего напряжения сопровождается тепловым рассеиванием энергии в данном элементе, а не его поступлением в электрическое устройство. При аномально больших параметрах импульса варистор сгорит. Обычно это происходит или в виде разрушения его кристалла с коротким замыканием электродов, или разрывом элемента на мелкие части.

Предотвратить такую ситуацию можно методом последовательной установки перед варистором предохранителя на питающем или сигнальном проводе цепи. Таким образом, гарантируется при возникновении мощного импульса разрыв цепи из-за перегорания предохранителя.

Можно говорить о том, что свойства варистора обеспечивают защиту цепи на электро- и информационных линиях от аномальных всплесков напряжения.

Варистор. Что это такое? Принцип работы

Резистор можно охарактеризовать как пассивный элемент электрической цепи. Резисторы используются в основном для контроля электрических параметров (напряжения и тока) в электроцепи, используя физическое свойство резистора, называемое сопротивлением.

Существуют различные типы резисторов:

  • резисторы с постоянным сопротивлением (углеродные, пленочные, металлопленочные, проволочные)
  • резисторы с переменным сопротивлением (проволочные переменные резисторы, потенциометры, металлокерамические переменные резисторы, реостаты)
  • особый тип резисторов, например, фоторезистор, варистор и так далее.

В этой статье подробно обсудим принцип работы варистора, схема подключения  и применение варистора на практике. Но, в первую очередь мы должны знать, что же такое варистор.

Варистор. Что это такое?

Варистор — это особый тип резистора, сопротивление которого изменяется под действием приложенного к нему напряжения. Поэтому его еще называют вольта зависимый резистор (VDR).  Это нелинейный полупроводниковый элемент получил свое название от слова переменный резистор (VARiable resistor)

Эти варисторы используются в качестве защитного устройства для предотвращения кратковременных всплесков напряжения переходных процессов в электроцепи. По внешнему виду и размеру варистор схож с конденсатором, поэтому его часто путают с ним.

История открытия

Существование электричества было обнаружено ещё в VII веке до н. э. греческими философами, но сам термин «электричество» появился только в 1600 году. Учёный Уильям Гилберт, проводя эксперименты с янтарём, обнаружил его способность притягивать другие вещества (электростатический заряд). Это явление получило название «янтарность». А уже через 60 лет Отто фон Герике создал конструкцию с шаром, надетым на металлический стержень, и фактически изготовил первую электростатическую машину.

В течение следующих лет учёные, экспериментаторы и инженеры открывали всё новые и новые свойства электричества, изучая его природу возникновения. Так, в 1800 году итальянец Алессандро Вольта изобрёл источник тока. Через 20 лет датчанин Кристиан Эрстед открыл электромагнитное взаимодействие, а Андре-Мари Ампер установил связь между электричеством и магнетизмом.

Продолжая исследования Джоуля, Ленца, Фарадея, Гаусса, Ома и Майкла Фарадея, будущий лауреат Нобелевской премии Джозеф Томсон охарактеризовал понятие электричества, введя термин «электрон». Таким образом было установлено, что электричество — это способность физических тел создавать вокруг себя поле, воздействующее на предметы. В каждом теле существуют элементарные частички, которые могут быть как свободными, хаотично перемещающимися, так и привязанными к атомам.

Если же к материалу, имеющему свободные электроны, поднести электромагнитное поле, то движение частичек становится направленным, и возникает электрический ток. Чтобы заряд переместился из одной точки в другую, необходимо затратить работу, которая называется напряжением. При перемещении частички сталкиваются с различными неоднородностями кристаллической решётки. В результате часть их потенциала передаётся этим дефектам, величина заряда электронов уменьшается, а сила тока снижается.

Металлооксидный варистор

Металл — оксид варистор или MOV для краткости, это резистор, зависящий от напряжения, в котором материал сопротивления представляет собой оксид металла, в первую очередь оксид цинка (ZnO), прессуют в керамики подобного материала. Металлооксидные варисторы состоят из приблизительно 90% оксида цинка в качестве керамического основного материала плюс другие наполнители для образования соединений между зернами оксида цинка.

Металлооксидные варисторы в настоящее время являются наиболее распространенным типом устройства ограничения напряжения и доступны для использования в широком диапазоне напряжений и токов. Использование металлического оксида в их конструкции означает, что MOV чрезвычайно эффективны в поглощении кратковременных переходных напряжений и имеют более высокие возможности обработки энергии.

Как и в случае обычного варистора, металлооксидный варистор запускает проводимость при определенном напряжении и прекращает проводимость, когда напряжение падает ниже порогового напряжения. Основное различие между стандартным варистором из карбида кремния (SiC) и варистором типа MOV состоит в том, что ток утечки через материал из оксида цинка MOV очень мал, а при нормальных условиях эксплуатации его скорость срабатывания при переходных процессах зажима намного выше.

MOV обычно имеют радиальные выводы и твердое внешнее синее или черное эпоксидное покрытие, которое очень похоже на дисковые керамические конденсаторы и может быть физически установлено на печатных платах. Конструкция типичного металлооксидного варистора имеет вид:

Конструкция металлического оксидного варистора

Чтобы выбрать правильное значение MOV для конкретного применения, желательно иметь некоторые знания об импедансе источника и возможной импульсной мощности переходных процессов. Для переходных процессов на входящей линии или фазе выбор правильного MOV немного сложнее, так как обычно характеристики источника питания неизвестны. В общем, выбор MOV для электрической защиты цепей от переходных процессов и скачков напряжения в сети часто не более чем обоснованное предположение.

Тем не менее, металлооксидные варисторы доступны в широком диапазоне напряжений варистора, от около 10 В до более 1000 В переменного или постоянного тока, поэтому выбор может быть полезен при знании напряжения питания. Например, при выборе MOV или кремниевого варистора в этом отношении его максимальное номинальное постоянное среднеквадратичное напряжение должно быть чуть выше максимального ожидаемого напряжения питания, скажем, 130 вольт среднеквадратичного значения для источника питания 120 вольт, и 260 вольт среднеквадратичного значения для напряжения 230 вольт.

Максимальное значение импульсного тока, которое будет принимать варистор, зависит от длительности переходного импульса и количества повторений импульсов. Можно предположить ширину переходного импульса, которая обычно составляет от 20 до 50 микросекунд (мкс). Если пиковый импульсный ток недостаточен, варистор может перегреться и повредиться. Таким образом, чтобы варистор работал без сбоев или ухудшений, он должен иметь возможность быстро рассеивать поглощенную энергию переходного импульса и безопасно вернуться в свое предимпульсное состояние.

Оценка варисторов по основным параметрам

Для варисторов существует нескольким основных оценочных параметров, каковыми являются:

  • номинальное (рабочее) напряжение (постоянное Udc или переменное Urms);
  • ток перегрузки (импульсный) Imax и энергия импульса Wmax.

Номинальное напряжение определяет максимально возможное напряжение, которое может быть применено к варистору. Превысить номинальное напряжение может только непродолжительный импульс перенапряжения, а именно ток перегрузки (импульсный) Imax и энергия импульса Wmax. При работе варистора к нему применяются амплитуда и количество импульсов, что и является характеристикой импульсов стандартной формы.

Wmax — энергия, которая рассеивается варистором, когда через него протекает импульса тока 10/1000. Характеристика Pmax должна иметься в виду, когда он не справляется с рассеиванием тепла в паузах между приложенными импульсами тока и перегревается. В целом Pmax зависит от размера и конструкции выводов изделия. 

Принцип действия

Варистор — это полупроводниковый прибор с симметричной нелинейной вольтамперной характеристикой. По ее форме можно сделать вывод о том, что варистор работает и в переменном и в постоянном токе. Рассмотрим её подробнее.

В нормальном состоянии ток через варистор предельно мал, его называют током утечки. Его можно рассматривать как диэлектрический компонент с определенной электрической емкостью и можно говорить, что он не пропускает ток. Но, при определенном напряжении (на картинке это + — 60 Вольт) он начинает пропускать ток.

Другими словами, принцип работы варистора в защитных цепях напоминает разрядник, только в полупроводниковом приборе не возникает дугового разряда, а изменяется его внутреннее сопротивление. При уменьшении сопротивления, ток с единиц микроампер возрастает до сотен или тысяч Ампер.

Условное графическое изображение варистора в схемах:

Обозначение элемента на схемах напоминает обычный резистор, но перечеркнутый по диагонали линией, на которой может быть нанесена буква U

Чтобы найти на плате или в схеме этот элемент – обращайте внимание на подписи, чаще всего они обозначаются, как RU или VA

Внешний вид варистора:

Варистор устанавливают параллельно цепи для ее защиты. Поэтому при импульсе напряжения защищаемой цепи — энергия поступает не в устройство, а рассеивается в виде тепла на варисторе. Если энергия импульса слишком велика — варистор сгорит. Но понятие сгорит размазано, варианта развития два. Либо варистор просто разорвет на части, либо его кристалл разрушится, а электроды замкнутся накоротко. Это приведет к тому, что выгорят дорожки и проводники, или произойдет возгорание элементов корпуса и других деталей.

Чтобы этого избежать перед варистором, последовательно со всей цепью на сигнальный или питающий провод устанавливают предохранитель. Тогда в случае сильного импульса напряжения и долговременного срабатывания или перегорания варистора сгорит и предохранитель, разорвав цепь.

Если сказать вкратце, для чего нужен такой компонент — его свойства позволяют защитить электрическую цепь от губительных всплесков напряжения, которые могут возникать как на информационных линиях, так и на электрических линиях, например, при коммутации мощных электроприборов. Мы обсудим этот вопрос немного ниже.

Проверка на исправность

Для поиска неисправностей необходима схема устройства. Для примера следует обратиться к схеме 2, в которой применяется варистор. В ней будет рассмотрен только вариант выхода из строя полупроводникового резистора. Основным этапом поиска неисправностей является подготовка рабочего места и инструмента, которая позволяет сосредоточиться на выполнении ремонта и произвести его качественно. Для ремонтных работ потребуется следующий инструмент:

  1. Отвертка.
  2. Щетка, которая нужна для очистки платы от пыли. Следует производить очистку постоянно, поскольку она является проводником электричества. В результате этого может произойти выход из строя определенного элемента схемы или короткое замыкание.
  3. Паяльник, олово и канифоль.
  4. Мультиметр для диагностики радиокомпонентов.
  5. Увеличительное стекло для просмотра маркировки.

После подготовки рабочего места и инструмента следует аккуратно разобрать сетевой фильтр, а затем при необходимости произвести очистку от пыли и мусора.

Схема 2 — Схема электрическая принципиальная сетевого фильтра на 220 вольт и его доработка.

Найти варистор и произвести его визуальный осмотр. Корпус должен быть целым и без трещин. Если было обнаружено нарушение целостности корпуса, то его необходимо выпаять и произвести замену на такой же или выбрать аналог. Необходимо отметить, что полярность подключения варистора в цепь не имеет значения. Если механические повреждения не обнаружены, то следует перейти к его диагностике, которая производится двумя способами:

  1. Измерение сопротивления.
  2. Поиск неисправности, исходя из технических характеристик элемента.

В первом случае деталь выпаивается из платы и замеряется значение ее сопротивления при помощи мультиметра. Переключатель ставится в положение максимального диапазона измерений (2 МОм достаточно). При замере не следует касаться руками варистора, поскольку прибор покажет сопротивление тела. Если мультиметр показывает высокие значения, то радиокомпонент исправен, а при других значениях его следует заменить. После замены следует собрать корпус и произвести включение сетевого фильтра.

Существует и другой способ выявления неисправного варистора, основанный на анализе характеристик элемента. Его, как правило, используют в том случае, если замер величины сопротивления не дал необходимых результатов. Для этого следует обратиться к техническим характеристикам варистора, согласно которым можно выявить его неисправность.

Следует проверить силу тока, при которой он работает, поскольку ее значение может быть меньше необходимой. В этом случае он не будет работать. Также нужно проверить величину напряжения, на которую он рассчитан. Если по каким-либо причинам эти показатели меньше допустимых, то полупроводниковый резистор не откроется.

Таким образом, варистор получил широкое применение в различных устройствах защиты от перепадов напряжения и блоках питания, а также статического электричества. Современные технологии позволяют получить низкие показатели времени срабатывания, благодаря которому сферы применения этого радиоэлемента расширяются.

Краткая теория о варисторах

Варистор – это разновидность нелинейного полупроводникового резистора, сопротивление которого зависит от приложенного напряжения. Его вольтамперная характеристика носит сильно нелинейный характер. Сопротивление варистора сильно уменьшается при достижении порогового напряжения. Благодаря этому варисторы широко используются для защиты от импульсных перенапряжений. Обычно варистор включается параллельно защищаемой нагрузке, при этом он должен быть рассчитан на номинальное напряжение питания данной нагрузки.

Если пороговое напряжение на варисторе не превышено он фактически является изолятором. Если порогового значения напряжения превышено, то сопротивление варистора резко падает. При этом варистор шунтирует нагрузку защищая ее от воздействия недопустимо высокого напряжения питания.

Как правило, в качестве порогового напряжения варистора указывается напряжение, при котором через него протекает ток в 1 мА. Когда пороговое напряжение превышено через варистор может протекать очень большой ток. Если перенапряжение в защищаемой цепи будет носить длительный характер, то варистор выйдет из строя. При длительном падении сопротивления варистора в цепи возникает короткое замыкание, что должно вызвать срабатывание предохранителя.

Как определить тип системы заземления

Для определения типа системы заземления нужно рассмотреть проводники PEN, то есть как они разделены. Если все готово, проводка похожа на систему TN-C-S. В этом случае для трехфазной цепи пять главных проводов выходят из основного распределительного щитка дома, а для однофазной цепи используются только три провода. PEN-проводники разделяются на два компонента: PE и N.

Обратите внимание! Если он не разделен, проводка будет работать в соответствии с системой TN-C: с 4 проводами от трехфазной системы и 2 проводами от однофазной системы, идущими от распределительного щита. Основываясь на описанных принципах, можно легко определить тип системы заземления

Во всех случаях, когда система TN-C используется в частных домах, рекомендуется перенести ее на схему TN-C-S, которая является более перспективной и безопасной

Основываясь на описанных принципах, можно легко определить тип системы заземления. Во всех случаях, когда система TN-C используется в частных домах, рекомендуется перенести ее на схему TN-C-S, которая является более перспективной и безопасной.

Как вычислить систему заземления

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector