Практические аспекты оу. напряжение смещения, ток смещения, дрейф
Содержание:
- Ограничение уровня выходного напряжения компаратора и триггера Шмитта
- Улучшение параметров дифференциального усилителя
- Что такое черный ящик в электронике
- Обобщенная схема усилителя
- Что такое четырехполюсник
- Типы усилителей
- Входное и выходное сопротивление
- Дрейф
- Напряжение смещения
- Насыщение выхода инвертирующего усилителя
Ограничение уровня выходного напряжения компаратора и триггера Шмитта
Применение положительной обратной связи (ПОС) в компараторах и триггерах Шмитта ускоряет переключение схем, но в связи с тем, что выходное напряжение UВЫХ изменяется от UНАС+ до UНАС-, то время переключения составляет довольно значительную величину (от долей до единиц микросекунд).
Кроме того существует проблема несовместимостей уровней выходного напряжения, к примеру, при напряжении питания ОУ UПИТ = ±15 В, выходное напряжение составит UВЫХ ≈ ±14 В (UНАС+ ≈ +14 В, а UНАС- ≈ -14 В), в то время как уровни ТТЛ микросхем составляют около +5 В или 0 В.
Для устранения вышеописанных проблем применяют так называемую привязку или ограничение уровня выходного напряжения, для этого в компаратор или триггер Шмитта вводят ООС в виде различных схем ограничения. Простейшими ограничительными схемами являются диоды или стабилитроны. Схема триггера Шмитта с ограничение выходного напряжения показана ниже
Триггер Шмитта с ограничением выходного напряжения при помощи стабилитрона в цепи ООС.
Ограничение выходного напряжения в триггере Шмитта работает следующим образом. При поступлении на инвертирующий вход напряжения меньше, чем напряжение опорного уровня (UВХ ОП), то выходное напряжение UВЫХ начинает изменяться в положительном направлении и при достижении напряжения стабилизации стабилитрона UСТ напряжение на выходе перестанет расти, а будет изменяться только ток. При этом выходное напряжение будет равняться напряжению стабилизации стабилитрона (UВЫХ = UСТ).
В случае если входное напряжение начнёт увеличиваться, выше опорного напряжения, то на выходе напряжение начнёт уменьшаться и в этом случае направление тока через стабилитрон начнёт изменяться на противоположный, а стабилитрон начнёт вести себя как диод. В результате падение напряжения на нём составит примерно 0,7 В независимо от величины протекающего через него тока, а на выходе напряжение составит -0,7 В.
Таким образом, при использовании стабилитрона выходное напряжение триггера Шмитта составит: UВЫХ1 = UСТ (при отсутствии ограничения UНАС+) или UВЫХ2 ≈ 0,7 (при отсутствии ограничения UНАС-).
Для симметричного ограничения выходного напряжения могут применяться последовательно включенные диоды или стабилитроны, что показано на рисунке ниже
Триггер Шмитта с симметричным ограничением выходного напряжения.
В данной схеме реализуется симметричное ограничение выходного напряжения относительно опорного напряжения, причем выходное напряжение выше опорного напряжения ограничивается стабилитроном VD1, а напряжение при этом составит на 0,7 В больше напряжения стабилизации. В случае же выходного напряжения ниже опорного, то выходное напряжение будет на 0,7 В ниже напряжения стабилизации стабилитрона VD2.
При расчёте компараторов и триггеров Шмитта с ограничением выходного напряжения в качестве UНАС+ необходимо использовать UСТ (когда используется один стабилитрон) или UСТVD1 (при двухстороннем ограничении). А вместо UНАС- необходимо использовать значение падения напряжения на диоде примерно 0,7 В (при одном стабилитроне) или UСТVD2 (при двухстороннем ограничении).
Теория это хорошо, но без практического применения это просто слова.Здесь можно всё сделать своими руками.
Улучшение параметров дифференциального усилителя
Основными недостатками вышеописанной схемы дифференциального усилителя являются низкое сопротивление и возникновение трудности изменить коэффициент усиления, так как соотношение сопротивлений должно быть достаточно точно согласовано.
Первый недостаток связан с тем, что входным сопротивлением дифференциального усилителя являются по сути сопротивления резисторов R1 и R2, которые имеют величину от единиц до десятков кОм. При увеличении величин этих сопротивлений приходится увеличивать сопротивления R3 и R4, что приводит к уменьшению полосы пропускания усилителя и появлению дополнительных шумов. Решением данной проблемы является изолирование и развязка входов дифференциального усилителя при помощи двух повторителей напряжения по схеме неивертирующего усилителя. Схема такого дифференциального усилителя представлена ниже
Схема увеличения входного сопротивления дифференциального усилителя на ОУ.
Схема состоит из двух операционных усилителей включённых по схеме повторителя напряжения, входное сопротивление которых очень велико (десятки-сотни МОм), поэтому сопротивление источника сигнала практически не влияет на входное напряжение. На нагрузке RH итоговое напряжение будет зависеть от разности входных напряжений
Особенностью данной схемы является то, что она имеет дифференциальный выход, то есть сопротивление нагрузки подключается только к выходам операционных усилителей DA1 и DA2
Для решения, проблемы упрощения регулирования коэффициента усиления дифференциального усилителя, может быть применена схема состоящая, как и предыдущая из двух повторителей напряжения с включением на дифференциальном выходе, параллельно сопротивлению нагрузки, дополнительно трёх последовательных резисторов. Данная схема изображена ниже
Схема дифференциального усилителя, позволяющая регулировать коэффициент усиления одним резистором.
Данная схема состоит из двух ОУ DA1 и DA2, включённых по схеме повторителя напряжения и резисторов R1, R2 и R3, причём R1 = R3 = R.
Работа данной схемы объясняется следующим образом. В соответствии с принципом виртуального замыкания, напряжение между инвертирующим и неинвертирующим входом ОУ равно нулю, поэтому на резисторе R2 напряжение будет равно разности между напряжениями UBX1 и UBX1.
Тогда ток, протекающий через резистор R2, составит
Так как резисторы R1, R2 и R3 включены последовательно, то такой же ток протекает и через резисторы R1 и R3. Тогда, с учётом того что R1 = R3 = R, выходное напряжение на сопротивлении нагрузки составит
Легко заметить, что выходное напряжение зависит от отношения сопротивлений R1, R2 и R3, поэтому изменяя величину сопротивления резистора R2 можно изменять величину выходного напряжения, а, следовательно, и коэффициент усиления схемы. Приняв отношение сопротивлений R и R2, за некоторый коэффициент пропорциональности можно несколько упростить выражение для выходного напряжения
Вышеописанные дифференциальные усилители имеют один недостаток: работа усилителя возможна только на незаземлённую (плавающую) нагрузку, то есть нагрузка не должна быть соединена с землёй. Для устранения данного недостатка необходимо на выход схемы добавить усилитель с дифференциальным входом и несимметричным выходом. Таким усилителем является простейший дифференциальный усилитель, рассмотренный вначале статьи. Получившаяся схема носит название измерительного или инструментального усилителя.
Что такое черный ящик в электронике
В общем виде усилитель можно рассматривать как черный ящик. Что представляет из себя этот черный ящик? Это ящик. Он черный). А так как он черный, то абсолютно никто не знает, что находится в нем. Остается только предполагать. Но возможен и такой вариант, что мы можем предпринять какие-либо действия и ждать ответной реакции. После ответной реакции этого черного бокса, можно предположить, что находится у него внутри.
То есть по сути черный ящик должен иметь какие-либо “сенсоры” для восприятия информации извне, некий “вход”, а также некий “выход” для ответной реакции. То есть подавая на вход какое-либо воздействие, мы ждем ответной реакции черного ящика на выходе.
Пусть в черном ящике будет кот или кошка, но пока никто не знает, что он(а) там есть. Что мы сделаем в первую очередь? Потрясем ящик или пнем по нему, так ведь? Если там кто-то мяукнет, значит однозначно или кошка, или кот). То есть последовала ответная реакция. Как определить дальше кошка или кот? Открываем ящик, и из него вылазит лохматое чудо. Если побежала – значит кошка. Если побежал – значит кот).
Но также в черном ящике может быть абсолютно любое тело или вещество. Для таких ситуаций мы должны провести как можно больше опытов, то есть произвести как можно больше входных воздействий для более точного определения содержимого черного ящика.
Обобщенная схема усилителя
Она выглядит примерно вот так:
Как мы можем видеть на схеме, ко входу усилительного каскада через клеммы 1 и 2 подсоединяется какой-либо источник слабого сигнала с ЭДС EИ и внутренним сопротивлением RИ . Именно этот слабый сигнал с этого источника мы будем усиливать. Далее, как и полагается, каждый усилитель обладает своим каким-либо входным сопротивлением Rвх . Сила тока Iвх в цепи EИ —>RИ—>Rвх , как ни трудно догадаться, будет зависеть от входного сопротивления усилительного каскада Rвх .
Как вы уже знаете, источник питания играет главную роль в усилительном каскаде. Маломощный слабый сигнал управляет расходом энергии источника питания. В результате на выходе мы получаем умощненную копию входного слабого сигнала. Усиление произошло благодаря тому, что источник питания давал свою мощность для усиления входного сигнала. Ну как-то вот так).
В выходной цепи усилителя мы получаем усиленный сигнал с ЭДС Eвых и выходным сопротивлением Rвых . Через клеммники 3 и 4 мы цепляем нагрузку Rн , которая уже будет потреблять энергию усиленного сигнала. Сила тока в цепи Eвых —> Rвых —> Rн будет зависеть от сопротивления нагрузки Rн .
Что такое четырехполюсник
В электронике черным ящиком является четырехполюсник. Что вообще такое четырехполюсник? Четырехполюсник – это черный ящик, внутри которого имеется неизвестная электрическая цепь. Здесь мы видим две клеммы на вход, через которые подается входное воздействие и две клеммы на выход, с которых мы уже будем снимать отклик нашего “электрического черного ящика”.
Пассивный четырехполюсник
Например, RC-цепь является пассивным четырехполюсником, так как она имеет четыре вывода: два на вход и два на выход, и как мы видим, она не содержит в себе какой-либо источник питания. Эта RC цепочка является пассивным фильтром низкой частоты (ФНЧ).
В пассивных четырехполюсниках напряжение или ток на выходе могут быть больше, чем на входе, но мощность при этом не увеличивается. Как же напряжение или ток на выходе могут быть больше, чем на входе? Здесь достаточно вспомнить трансформатор, а также последовательный и параллельный колебательные контура. Для них точнее было бы определение преобразователи напряжения, но никак не усилитель, так как усилитель должен иметь в своем составе обязательно источник питания, у которого он будет брать энергию для усиления слабого входного сигнала.
Также в пассивном четырехполюснике мощность на выходе никак не будет больше мощности, чем на входе. Если вы этого добьетесь, то сразу же получите вечный источник энергии и Нобелевскую премию в придачу. Но помните, что закон сохранения энергии, который впервые был еще сформулирован Лейбницем в 17 веке, никто не отменял.
Активный четырехполюсник
А вот этот четырехполюсник мы будем уже называть активным, так как он имеет в своем составе источник питания +Uпит , которое требуется для того, чтобы усиливать сигнал.
То есть мы здесь видим две клеммы на вход, на которые загоняется сигнал Uвх , а также видим две клеммы на выход, где снимается напряжение Uвых . Питается наш четырехполюсник через +Uпит , в результате чего, в данном случае, сигнал на выходе будет больше, чем сигнал на входе.
Загоняя на вход такой схемы синусоиду, на выходе мы получим ту же самую синусоиду, но ее амплитуда будет в разы больше.
Это, конечно же, верно для идеального усилителя, т.е. абсолютно линейного и без ограничения на амплитуду входного и выходного сигнала. В реальных усилителях, требуется чтобы амплитуда не превышала допустимую и усилитель был правильно спроектирован. Кроме того, любой реальный усилитель вносит искажения и характеризуется коэффициентом нелинейных искажений (КНИ) и еще многими другими параметрами, которые мы рассмотрим в следующей статье.
В активном четырехполюснике, одним из которых является усилитель мощности, мощность на выходе будет больше, чем на входе. Естественно, при этом не нарушается закон сохранения энергии, так как мощность, которая выделяется на нагрузке – это преобразованная мощность источника питания. Входной слабый сигнал просто управляет этой мощностью. Более подробно можно прочитать в статье про принцип усиления транзистора.
В электронике мы будем рассматривать усилитель, как активный четырехполюсник, на вход которого подается маломощный сигнал Uвх, а к выходу цепляется нагрузка Rн .
Типы усилителей
Усилители можно разделить на три группы:
Усилитель напряжения
Усилитель напряжения (УН) усиливает входное напряжение в заданное число раз. Этот коэффициент называется коэффициентом усиления по напряжению и вычисляется по формуле:
где
KU – это коэффициент усиления по напряжению
Uвых – напряжение на выходе усилителя, В
Uвх – напряжение на входе усилителя, В
Выходное усиленное напряжение не должно меняться от тока нагрузки, а следовательно, и от сопротивления нагрузки. В идеале, выходное сопротивление Rвых должно быть равно нулю, что недостижимо на практике. Поэтому, УН стараются проектировать так, чтобы минимизировать выходное сопротивление Rвых .
В таком режиме усилитель работает, если выполняются условия, что Rвх намного больше, чем Rвых т. е. Rвх >>Rи и Rн намного больше, чем Rвых (Rн >>Rвых ). Чем больше номинал Rн , тем лучше для усилителя напряжения, так как нагрузка не будет просаживать выходное напряжение Uвых. Здесь все просто: чем меньше сопротивление нагрузки, тем бОльшая сила тока будет течь по цепи Eвых —> Rвых —> Rн , тем больше будет падение напряжения на выходном сопротивлении Rвых , исходя из формулы ЭДС: Eвых =IвыхRвых +IвыхRн . Об этом можно более подробно прочитать в статье Закон Ома для полной цепи.
Усилитель тока
Усилитель тока (УТ) усиливает входной ток в заданное число раз. Этот коэффициент называется коэффициентом усиления по току и вычисляется по формуле:
где KI – коэффициент усиления по току
Iвых – сила тока в цепи нагрузки, А
Iвх – сила тока во входной цепи Eи —>Rи —>Rвх , А
Смысл работы усилителя тока такой: при определенной силе тока во входной цепи, на выходе в цепи нагрузки мы получаем силу тока, бОльшую в KI раз, независимо от того, какое значение принимает номинал нагрузки. Здесь уже работает простой закон Ома I=U/R.
Если сила тока должна быть постоянной, а значение сопротивления у нас может быть плавающим, то для поддержания постоянной силы тока в цепи нагрузки у нас усилитель автоматически изменяет напряжение Uвых на нагрузке. В результате, ток как был постоянной величиной, так и остался. Или буквами: Rн =var, Iвых= const.
Объяснение выше вы будете рассказывать своему преподу по электронике, а теперь объяснение для полных чайников. Итак, во входной цепи Eи —>Rи —>Rвх пусть у нас течет сила тока в 10 мА. Коэффициент KI =100, следовательно, на выходе в цепи нагрузки Eвых —>Rвых —> Rн будет течь ток с силой в 1 А (10мА х 100). Но сам по себе такой ток не будет ведь гулять по этой цепи. Ему надо создать условия для протекания. Допустим, у нас нагрузка 10 Ом. Какое тогда напряжение должно быть в этой цепи для получения силы тока в этой цепи в 1 А? Вспоминаем дядюшку Ома: I=U/R. 1=Uвых /10, получаем U=10 В. Вот такое напряжение нам будет выдавать усилитель тока на выходе.
Но что, если нагрузка поменяет свое значение? Ток должен остаться таким же, не забывайте, то есть 1 А, так как это у нас усилитель тока. В этом случае, чтобы сила тока в цепи оставалась 1 А усилитель автоматически поменяет свое значение напряжения на выходе Uвых на 1=Uвых /5. Uвых =5/1=5 В. То есть на выходе у нас уже будет 5 Вольт.
Но также не забываем еще об одном параметре, который у нас находится в выходной цепи усилителя тока. Это выходное сопротивление Rвых . Поэтому, нам необходимо, чтобы выполнялось условие: Rвх << Rи и Rн << Rвых при которых обеспечивается заданный ток в нагрузке при малом значении напряжения.
Усилитель мощности
Раньше было очень круто и модно собирать усилители мощности (УН) своими руками, включить Ласковый Май и вывернуть громкость на всю катушку. Сейчас же УМ может собрать или купить каждый, благо интернет и Алиэкпресс всегда под рукой.
Чем же УМ отличается от УН и УТ?
Если в УТ мы увеличивали только силу тока, в УН – напряжение, то в УМ мы увеличиваем в кратное число раз ток и напряжение.
Формула мощности для постоянного и переменного тока при активной нагрузке выглядит вот так:
где
P – мощность, Вт
I – сила тока, А
U – напряжение, В
Следовательно, коэффициент усиления по мощности запишется как:
где
KP – коэффициент усиления по мощности
Pвых – мощность на выходе усилителя, Вт
Pвх – мощность на входе усилителя, Вт
Для усилителя мощности условия согласования входной цепи с источником входного сигнала и выходной цепи с нагрузкой для передачи максимальной мощности имеют вид: Rвх ≈ Rи и Rн ≈ Rвых .
Также не забывайте, что нагрузки могут быть как чисто активными (типа лампочки накаливания, резистора, различных нагревашек), так и иметь реактивную составляющую (катушки индуктивности, конденсаторы, двигатели и тд).
Входное и выходное сопротивление
Кто в первый раз сталкивается с этими понятиями, читайте эту статью. Кому лень читать, вкратце объясню здесь из прошлой статьи. Каждый усилительный каскад имеем свое входное и выходное сопротивление. На схеме Rвх и Rвых
Входное сопротивление усилителя находится по формуле Rвх =Uвх / Iвх . Думаю, здесь вопросов возникать не должно. Эта формула справедлива как для постоянного тока, так и для переменного. В случае с постоянным током – это у нас будет усилитель постоянного тока (УПТ).
Немного иначе обстоят дела с выходным сопротивлением. В теории, можно замкнуть выходные клеммы 3 и 4 накоротко. В этом случае во выходной цепи усилителя у нас появится ток короткого замыкания Iкз
Более наглядно:
Ну и по закону Ома нетрудно догадаться, что Rвых = Eвых / Iкз . Но как же найти Евых ? Достаточно разомкнуть цепь и просто и замерить напряжение мультиметром. Это и будет Eвых. Физический смысл очень простой. Так как вольтметр обладает очень высоким входным сопротивлением, то в цепи у нас почти не будет течь ток, так как по закону Ома I=U/R. А если сопротивление нагрузки бесконечно большое, то, следовательно, Iкз будет бесконечно малое.
В этом случае этим бесконечно маленьким током можно пренебречь и считать, что в цепи нет никакой силы тока. А раз сила тока равна нулю, то и падение напряжения на Rвых также будет равняться нулю или формулой: URвых = IRвых = 0 Вольт. Следовательно, на клеммах 3 и 4 мы будем замерять Eвых .
Выходное сопротивление усилителя можно найти двумя способами: теоретическим и практическим. Теоретический способ, часто сложен, поскольку неизвестны многие параметры “черного ящика”, называемого усилителем. Проще определить выходное сопротивление практическим путем.
Как найти выходное сопротивление на практике
Что нужно для этого? Номинальная мощность усилителя и допустимое напряжение на выходе
Не важно – усилитель это постоянного или переменного тока (напряжения). Тестирование усилителя любого типа желательно выполнять на уровне 70% допустимой выходной мощности
Это общая практика.
Если вы не забыли, мультиметр в этом случае нам покажет ЭДС Eвых , т. е. в данном случае Eвых = Uвых .
Номинал нагрузочного сопротивления должен выбираться исходя из допустимого тока и мощности усилителя.
Пример:
Выходная мощность усилителя 10 Вт, допустимое выходное напряжение (эффективное) 100 В. В этом случае, резистор нагрузки должен иметь сопротивление не менее R=U2/P = 10000/10 = 1 кОм. Мощность резистора: PR = U2/R = 10000/1000 = 10 Вт
Какой же физический смысл этого опыта? В результате этих шагов, у нас цепь станет замкнутой, а два сопротивления, Rвых и Rн , образуют делитель напряжения. Сюда же можно приписать закон Ома для полной цепи, который выражается формулой:
где
I – сила тока в цепи, А
E – ЭДС, В
R – сопротивление нагрузки, Ом
r – внутреннее сопротивление источника ЭДС, Ом
Применительно к нашей ситуации, формула будет иметь такой вид:
Отсюда получаем:
Или словами, ЭДС равняется сумме падений напряжения на каждом сопротивлении.
Как вы могли заметить, падение напряжения на сопротивлении Rвых зависит от силы тока в цепи. Чем больше сила тока в цепи, тем больше падение напряжения на выходном сопротивлении Rвых . Но от чего же зависит сила тока в цепи? От нагрузки Rн ! Чем она меньше, тем больше сила Iвых в цепи, тем больше будет падение напряжения на Rвых , а значит, падение напряжения на URн будет меньше.
Теперь, зная этот принцип, можно косвенно вычислить выходное сопротивление Rвых .
Шаг номер 3: Замеряем напряжение на нагрузке URн. Вспоминаем формулу выше:
отсюда
из формулы
Получаем, что
Далее что нам требуется – это увеличивать входное напряжение и снимать выходное напряжение – так мы увидим всю нелинейность выходной характеристики от тока и сможем замерить выходное сопротивление в диапазоне нагрузок, так как большинство усилителей мощности имеют нелинейность выходного сопротивления от допустимого тока нагрузки.
Дрейф
Будучи полупроводниковыми устройствами, операционные усилители подвергаются незначительным изменениям в поведении при изменениях рабочей температуры. Любые изменения в производительности ОУ, связанные с температурой, относятся к категории дрейфа операционного усилителя. Параметры дрейфа могут быть указаны для токов смещения, напряжения смещения и т.п.. Для более подробной информации смотрите техническое описание на конкретный операционный усилитель от производителя.
Чтобы свести дрейф операционного усилителя к минимуму, мы можем выбрать операционный усилитель, имеющий минимальный дрейф, и/или мы можем сделать всё возможное, чтобы поддерживать рабочую температуру как можно более стабильной. Последнее действие может включать в себя обеспечение некоторой формы управления температурой для внутренней части оборудования, в которой размещается операционный усилитель(и). Это не так странно, как может показаться на первый взгляд. Известно, что, например, в стандартных лабораторных опорных генераторах точного напряжения иногда используются «печи» (термостаты) для поддержания чувствительных компонентов (таких как стабилитроны) при постоянной температуре
Если требуется высокая точность при обычных факторах стоимости и гибкости, это может быть вариант, на который стоит обратить внимание
Резюме
Операционные усилители, будучи полупроводниковыми устройствами, подвержены изменениям температуры. Любые изменения в производительности усилителя, возникающие в результате изменения температуры, известны как дрейф. Дрейф лучше всего минимизировать с помощью управления температурой окружающей среды.
Напряжение смещения
Другой практической проблемой для производительности операционного усилителя является смещение напряжения. То есть влияние наличия выходного напряжения на величину, отличную от нуля, когда два входных вывода закорочены вместе. Помните, что операционные усилители – это, прежде всего, дифференциальные усилители: они должны усиливать разность напряжений между двумя входными выводами и не более того. Когда разность входных напряжений точно равна нулю, мы (в идеале) ожидаем, что на выходе будет точно нулевое напряжение. Однако в реальном мире это случается редко. Даже если рассматриваемый операционный усилитель имеет нулевой коэффициент усиления синфазного сигнала (бесконечный CMRR), выходное напряжение может быть не равным нулю, когда оба входа закорочены вместе. Это отклонение называется смещением выходного уровня операционного усилителя.
Смещение выходного напряжения операционного усилителя
Идеальный операционный усилитель выдает ровно ноль вольт, когда оба входа закорочены вместе и соединены с землей. Тем не менее, большинство стандартных операционных усилителей будут сдвигать свое выходное напряжение в сторону уровня насыщения, либо отрицательного, либо положительного. В приведенном выше примере выходное напряжение насыщается при значении положительных 14,7 вольт, чуть меньше, чем +V (+15 вольт) из-за предела положительного насыщения этого конкретного операционного усилителя. Поскольку смещение приводит выходное напряжение к точке полного насыщения, нельзя сказать, какое смещение напряжения присутствует на выходе. Если раздельный источник питания +V/-V был достаточно высокого напряжения, кто знает, может быть, выходное напряжение составляло бы несколько сотен вольт из-за влияния смещения!
По этой причине напряжение смещения обычно выражается через эквивалентную величину дифференциального входного напряжения, создающего этот эффект. Другими словами, мы предполагаем, что операционный усилитель является идеальным (без смещения вовсе), и небольшое напряжение прикладывается последовательно с одним из входов, чтобы заставить выходное напряжение в ту или иную сторону отойти от нуля. Поскольку дифференциальные коэффициенты усиления операционных усилителей настолько велики, значение «входного напряжения смещения» необязательно должно учитывать то, что мы видим с закороченными входами:
Входное напряжение смещения
Напряжение смещения будет приводить к небольшим ошибкам в любой схеме на операционных усилителях. Итак, как мы компенсируем его? В отличие от синфазного коэффициента усиления, производители обычно предусматривают средства устранения смещения в корпусных операционных усилителях. Обычно два дополнительных вывода на корпусе операционного усилителя зарезервированы для подключения внешнего «подстроечного» потенциометра. Эти выводы обозначаются как смещение нуля и используются следующим обобщенным образом:
Схема смещения нуля операционного усилителя
На одиночных операционных усилителях, таких как 741 и 3130, выводы смещения нуля – это выводы 1 и 5 на 8-выводном DIP корпусе. Другие модели операционных усилителей могут использовать другие выводы для смещения нуля и/или потребовать немного отличающиеся схемы подключения подстроечного потенциометра. Некоторые операционные усилители вообще не предоставляют выводов смещения нуля! Подробности смотрите в технических описаниях от производителей.
Насыщение выхода инвертирующего усилителя
Давайте представим себе такую ситуацию. У нас входное переменное напряжение амплитудой 1 В. Коэффициент усиления 50. По нашим расчетам на выходе мы должны получить сигнал амплитудой 50 В. Но как мы получим 50 В, если питание нашего усилителя, допустим, +-15 В? Усиленный сигнал, амплитудой больше чем 15 В, мы получить не сможем. Хотя типичное падение напряжения во внутренних цепях реальных ОУ составляет около 0,5-1,5 В. То есть максимальный размах сигнала, который мы можем получить в данном случае на выходе будет 27-29 Вольт.
Хотя в настоящее время есть ОУ, которые все-так позволяют получать на выходе +-Uпит. Такое свойство некоторых ОУ называется Rail-to-Rail. В дословном переводе “от рельса до рельса” или “от шины до шины”. Есть такие параметры, как Rail-to-Rail по входу (Rail-to-Rail input). Здесь на вход мы можем подавать сигналы вплоть до Uпит ОУ. Иногда в даташите оговаривается, с отрицательной или положительной шины питания можно подходить к этому параметру. Есть также есть Rail-to-Rail output. Здесь на выходе мы можем получить напряжение +-Uпит. Если усиленный сигнал на выходе не вписывается в такой диапазон, то он будет срезаться. Такое свойство ОУ называется насыщением выхода. То есть надо всегда помнить, что если амплитуда сигнала будет превышать +-Uпит усилителя, то такой сигнал на выходе будет срезан по этому уровню.
Продемонстрируем это в симуляторе Proteus. Итак, давайте на вход подадим синусоидальный сигнал амплитудой в 1 В, а коэффициент усиления сделаем 20, подобрав нужные резисторы. То есть по нашим расчетам мы должны получить синус с амплитудой в 20 Вольт. Смотрим осциллограмму
Подавали на вход синусоиду, а получили на выходе синусоиду с обрезанными верхушками и амплитудой в 14 В. Одна клеточка в данном случае – это 2 В. Как вы видите,сигнал, амплитудой более чем +-Uпит мы получить не сможем. Всегда помните об этом, особенно при конструировании радиоэлектронных устройств.