Беспроводная передача электроэнергии
Содержание:
- Преимущества беспроводной передачи
- Пример 1 – Определение потери напряжения, когда нагрузка подключена в конце линии
- Реальные проекты в наши дни
- Выставка, где впервые «объединились машины»
- Основные причины потерь электроэнергии
- История развития
- История беспроводной передачи энергии
- Этапы реализации устройства Тесла
- Беспроводная передача электроэнергии, первые опыты
- Передача энергии на расстоянии для группы людей
- Схема беспроводной передачи электроэнергии
- Беспроводной путь
- Перспективы беспроводной передачи электричества
- Преимущества, недостатки и биологическое воздействие
Преимущества беспроводной передачи
В чем заключаются преимущества? Плюсы:
- сокращаются расходы, связанные с поддержанием прямых соединителей (например, в традиционном промышленном скользком кольце);
- большее удобство для зарядки обычных электронных устройств;
- безопасная передача в приложения, которые должны оставаться герметически закрытыми;
- электроника может быть полностью скрыта, что снижает риск коррозии из-за таких элементов как кислород и вода;
- надежная и последовательная подача питания на вращающееся, высокомобильное промышленное оборудование;
- обеспечивает надежную передачу мощности в критически важные системы во влажной, грязной и движущейся среде.
Независимо от приложения, ликвидация физического соединения обеспечивает ряд преимуществ по сравнению с традиционными разъемами питания кабеля.
Пример 1 – Определение потери напряжения, когда нагрузка подключена в конце линии
Определить потерю напряжения в трехфазной воздушной линии с номинальным напряжением Uном.=10 кВ протяженностью l = 2 км, питающей электрооборудование коммунального предприятия мощностью Р=100 кВт. Коэффициент мощности нагрузки cosϕ = 0,8. Линия выполнена алюминиевыми проводами марки А-25 сечением 25 мм2, расстояние между фазами 600 мм.
Решение.
1. Определяем активное сопротивление провода марки А-25:
где:
- γ – значение удельной проводимости для медных и алюминиевых проводов при температуре 20 °С принимается: для медных проводов – 53 м/Ом*мм2; для алюминиевых проводов – 31,7 м/Ом*мм2;
- s – номинальное сечение провода(кабеля),мм2;
Также вы можете встретить в тех. литературе еще одну формулу по определению активного сопротивления провода (кабеля):
где:
ρ – значение удельного сопротивления принимается: для медных проводов — 0,017-0,018 Ом*мм2/м; для алюминиевых проводов – 0,026 — 0,028 Ом*мм2/м, см. таблицу 1.14 .
2. Определяем индуктивное сопротивление для провода марки А-25 :
где:
- Дср. – среднее геометрическое расстояние между осями проводов, мм;
- d = 6,40 мм – диаметр провода, для марки провода А-25. Значение диаметра провода можно определить по ГОСТ 839-80 – «Провода неизолированные для воздушных линий электропередач» таблицы 1 – 4. В данном расчете я привожу значение диаметра провода, только для провода марки А, для остальных марок проводов значения диаметров проводов вы сможете найти непосредственно в самом ГОСТе;
- µ — относительная магнитная проницаемость для цветных металлов (немагнитных) равна 1, для стальных проводов µ может достигать значений 103 и даже больше.
2.1 Определяем среднее геометрическое расстояние между осями трех проводов проложенных в одной плоскости :
где: расстояние между проводами первой и второй фазы Д1-2= 600 мм, между второй и третью Д2-3 = 600 мм, между первой и третью Д1-3= 600 + 25 + 600 = 1225 мм.
3. Определяем коэффициент мощности tgϕ, зная cosϕ:
4. Определяем потерю напряжения в линии :
Реальные проекты в наши дни
Из всего того, что на сегодня предлагает рынок электротехники, относятся к беспроводной передаче электроэнергии зарядные устройства для смартфонов, электрические зубные щётки. В них используется принцип электромагнитной индукции.
Бесконтактная зарядка смартфона
В авиастроении началось серийное производство летательных беспилотных аппаратов, питающихся за счёт беспроводной передачи электричества. Небольшой микроволновый вертолёт с ректенной может подниматься на высоту до 15 метров над землёй. Появились беспилотники, которые могут летать в зоне видимости лазерного луча.
Китайский производитель бытовой техники Haier Group с 2010 года выпускает беспроводные LCD телевизоры.
Выставка, где впервые «объединились машины»
Поначалу Гайд-парк был охотничьим заповедником королевской семьи, и лишь в 17 веке его открыли для публики. Когда в 1840 году в Палату общин поступили 2 предложения ежегодно устраивать в Гайд парке ярмарки, их «забраковали» по соображениям общественной безопасности – ибо они были бы источником бесконечных бунтов и беспорядков среди низших классов, заканчивающихся большим количеством травм. Было бы действительно нелепо, когда все трезвые люди стремятся упразднить Ярмарку Бартоломью в городе, чтобы создать аналогичное в самой прекрасной части метрополии, рядом с дворцом. Вот так в те времена объясняли отказ.
Однако, в 1851 году там была устроена выставка, которую с самого начала планировали именно как временную. Поэтому и Хрустальный дворец – Кристалл Палас планировался, как временно сооружаемая конструкция. Идею, собрать сооружение из модульных элементов подал королевский архитектор, садовник и ботаник – Джозеф Пакстон (Joseph Paxton), по роду своей деятельности занимавшийся возведением оранжерейных стеклянных павильонов.
Главным достоинством теплиц Пакстона была их портативность. Ему было 47 лет, когда в 1850 году был объявлен конкурс проектов дворца для Всемирной выставки. За плечами Пакстона к тому времени была Великая оранжерея, построенная в 1837 году (снесённая из-за дороговизны обслуживания в 1923 году), бывшая на тот момент самым большим стеклянным зданием в мире. Отапливалась гигантская стеклянная теплица 8 котлами и 11 километрами труб. Проект выставочного здания Джозефа был одобрен обществом и был принят комиссией. Конструкция из чугуна и листового стекла (получаемого недавно изобретённым способом) как бы воплощала свежие достижения британской науки и промышленности, стоила относительно недорого и могла быть разобрана после окончания выставки. Работа архитектора была оценена – его посвятили в рыцари.
Не потому, что «рухнет», а только лишь потому, что планировались как временные. Кстати, Построенный с применением модулей Кристальный Дворец простоял в Гайд парке долее положенных по договору 6 месяцев, после чего был разобран, продан на металлолом, выкуплен и смонтирован на новом месте, где к нему подвели линию жд, и где он функционировал до пожара 1936 года.
Продемонстрировав фотки 1915 года со «странным» светом, бьющим в небо тогда, когда, по его словам, об электричестве только могли слышать, Mig не лукавил. Он действительно не знал, что это снимки 1915 года: о)
Конечно, то, что фотография сумела донести до нас видение выставок, произошедших до нашего рождения, – благо. Но фотографии были не всегда. Их заменяли рисунки и живопись. Виды выставки 1851 года были запечатлены Диккинсоном и имеются в книге, которая была опубликована в 1852 году (почти сразу после завершения выставки).
На картинах Дикксонса имеются и такие детали, как светильники, коими освещались сами залы и экспонаты. Кроме того, по картинам можно судить, чем освещались обычно помещения в то время.
Свечи!
Фонари и фонарики (со всеми культурными чертами)
Думаю, что сами картины будет вам интересно рассмотреть. Приведу некоторые.
Желающие могут полистать книгу или обратиться к поисковику: о)
Переходим к технике.
Кроме иллюстраций в книге имеются краткие описания экспозиций основных участников
Вот, что привлекло внимание автора книги в германской экспозиции:
«»
Уважаемые читатели. Предлагаю вникнуть в уровень развития техники и технологий времён первой всемирной выставки. Для этого привожу описание представленной машинерии (механизации), сделанную с помощью машинного переводчика (то есть, электронного):
Основные причины потерь электроэнергии
Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:
- Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
- Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
- Расход в трансформаторах, имеющий магнитную и электрическую природу ( 1 ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.
Потери в силовых трансформаторах подстанций
Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.
- Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
- Холостая работа силовых установок.
- Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
- Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
- Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП. Гололед на ЛЭП
Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.
История развития
Передача электроэнергии на расстояние без проводов рука об руку развивается с прогрессом в области радиопередачи, потому что принцип действия в этих явлениях во многом схож, если не сказать одинаков. Большая часть изобретений основывается на методе электромагнитной индукции, а также электростатического поля.
В 1820 году А.М. Ампер открыл закон взаимодействия токов, который заключался, в том, что если по двум близко расположенным проводникам ток течет в одном направлении, то они притягиваются друг к другу, а если в разных, то отталкиваются.
М. Фарадей в 1831 году установил в процессе проведения экспериментов, что переменное (меняющееся по величине и направлении во времени) магнитное поле, порождаемое протеканием электрического тока, наводит (индуцирует) токи в близлежащих проводниках. Т.е. происходит передача электроэнергии без проводов. Подробно закон Фарадея мы рассматривали в статье ранее.
Ну а Дж. К. Максвелл еще через 33 года, в 1864 году перевел экспериментальные данные Фарадея в математический вид, собственно уравнения Максвелла являются основополагающими в электродинамике. Они описывают, как связаны электрический ток и электромагнитное поле.
Существование электромагнитных волн подтвердил в 1888 Г. Герц, в ходе своих экспериментов с искровым передатчиком с прерывателем на катушке Румкорфа. Таким образом производились ЭМ волны с частотой до пол гигагерца. Стоит отметить, что эти волны могли быть приняты несколькими приемниками, но те должны быть настроены в резонанс с передатчиком. Радиус действия установки был в районе 3-х метров. Когда в передатчике возникала искра, такие же возникали и на приемниках. Фактически это и есть первые опыты по передачи электроэнергии без проводов.
Глубокие исследования вел известный ученый Никола Тесла. Он в 1891 году изучал переменный ток высокого напряжения и частоты. В результате чего были сделаны выводы:
Для каждой конкретной цели нужно настраивать установку на соответствующую частоту и напряжение. При этом высокая частота не является обязательным условием. Лучшие результаты удалось добиться при частоте 15-20 кГц и напряжении передатчика 20кВ. Чтобы получить ток высокой частоты и напряжения использовался колебательный разряд конденсатора. Таким образом, можно передавать как электроэнергию, так и производить свет.
Ученный на своих выступлениях и лекциях демонстрировал свечение ламп (вакуумных трубок) под воздействием высокочастотного электростатического поля. Собственно основными заключениями Теслы было то, что даже в случае использования резонансных систем много энергии с помощью электромагнитной волны передать не получится.
Параллельно целый ряд ученных до 1897 года занимались подобными исследованиями: Джагдиш Боше в Индии, Александр Попов в России и Гульельмо Маркони в Италии.
Каждый из них внес свой вклад в развитие беспроводной передачи электроэнергии:
- Дж. Боше в 1894 году, зажигал порох, передав электроэнергию на расстояние без проводов. Это он сделал на демонстрации в Калькутте.
- А. Попов в 25 апреля (7 мая) 1895 года с помощью азбуки Морзе передал первое сообщение. В России до сих пор этот день, 7 мая, является Днём Радио.
- В 1896 году Г. Маркони в Великобритании также передал радиосигнал (азбука Морзе) на расстояние в 1,5 км, позже на 3 км на Солсберийской равнине.
Стоит отметить, что работы Тесла, недооценённые в свое время и потерянные на века, превосходили по параметрам и возможностям работы его современников. В тоже время, а именно в 1896 году его аппараты передавали сигнал на большие расстояния (48 км), к сожалению это было небольшим количеством электроэнергии.
И к 1899 году Тесла приходит к выводу:
Несостоятельность метода индукции представляется огромной по сравнению с методом возбуждения заряда земли и воздуха.
Эти выводу приведут к другим исследованиям, в 1900 году ему удалось запитать лампу от катушки, вынесенной в поле, а в 1903 году была запущена башня Вондерклифф на Лонг-Айленде. Она состояла из трансформатора с заземленной вторичной обмоткой, а на её вершине стоял медный сферический купол. С её помощью получилось зажечь 200 50-ватных ламп. При этом передатчик находился за 40 км от неё. К сожалению, эти исследования были прерваны, финансирование было прекращено, а бесплатная передача электроэнергии без проводов была экономически не выгодной бизнесменам. Башню разрушили в 1917 году.
История беспроводной передачи энергии
Великий французский физик Ампер в 1820 году путём многочисленных опытов пришёл к выводу о том, что магнитное поле может возбуждать в теле металла электрический ток. Так появился основополагающий закон Ампера.
Майкл Фарадей в 1831 открыл закон индукции, который стал базой для развития такой науки, как электромагнетизм.
Джеймс Максвелл после долгих экспериментов систематизировал свои наблюдения, квинтэссенцией которых в 1864 году стало уравнение Максвелла. Формула объясняла поведение электромагнитного поля.
Никола Тесла усовершенствовал аппарат для генерации электромагнитного поля, изобретённый Генрихом Герцем в 1888 году. На Всемирной выставке в 1893 г., состоявшейся в Чикаго, Тесла продемонстрировал свечение фосфорных лампочек без проводов.
Никола Тесла
Свой вклад в развитие беспроводной передачи энергии сделал русский учёный Александр Попов. В 1895 г. на заседании Русского физико-химического общества он показал изобретённый им детекторный радиоприёмник.
Далее вплоть до наших дней происходило патентование новых изобретений в области беспроводной передачи электрической энергии. Были произведены масса экспериментов, совершенно большое количество открытий. Последнее достижение в этой сфере – это передача электричества на большие расстояния без проводов с помощью технологии Wi-Fi. В 2017 году изобретён мобильный телефон без батареи.
Этапы реализации устройства Тесла
Для начала необходимо поместить небольшой слот в верхнюю часть трубы, чтобы обернуть один конец провода вокруг
Медленно и осторожно обматывать катушку, следя за тем, чтобы не перекрывать провода и, при этом, не создавать пробелов. Этот шаг – самая сложная и утомительная часть, но потраченное время даст очень качественную и хорошую катушку
Каждые 20, или около того, поворотов помещаются кольца маскирующей ленты вокруг обмотки. Они выступают в качестве барьера. В случае, если катушка начнет распутываться. По завершении нужно обернуть плотную ленту вокруг верхней и нижней части обмотки и распылить ее 2 или 3 слоями эмали.
Затем необходимо подключить первичный и вторичный аккумулятор к батарее. После — включить транзистор и резистор. Меньшая обмотка является основной, а более длительная обмотка – вторичной. Можно дополнительно установить алюминиевую сферу сверху трубы. Кроме того, соединить открытый конец вторичной с добавленной, которая будет действовать как антенна
Необходимо создавать все с тщательной осторожностью, чтобы не дотрагиваться до вторичного устройства при включении питания
При самостоятельной реализации существует опасность возгорания. Нужно перевернуть выключатель, установить лампу накаливания рядом с беспроводным устройством передачи энергии и наслаждаться световым шоу.
Беспроводная передача электроэнергии, первые опыты
В 1888 году Генрих Герц экспериментально подтвердил существование электромагнитных волн, предсказанных Максвеллом. Его искровой передатчик с прерывателем на основе катушки Румкорфа мог производить электромагнитные волны частотой до 0,5 гигагерц. Которые могли быть приняты несколькими приемниками, настроенными в резонанс с передатчиком.
Генрих Герц и его творение
Приемники могли располагаться на расстоянии до 3 метров, и при возникновении искры в передатчике, искры возникали и в приемниках. Так были проведены первые опыты по беспроводной передаче электрической энергии с помощью электромагнитных волн.
В 1891 году Никола Тесла, занимаясь исследованием переменных токов высокого напряжения и высокой частоты, приходит к выводу, что крайне важно для конкретных целей подбирать как длину волны, так и рабочее напряжение передатчика, и совсем не обязательно делать частоту слишком высокой. Ученый отмечает, что нижняя граница частот и напряжений, при которых ему на тот момент удалось добиться наилучших результатов, — от 15000 до 20000 колебаний в секунду при потенциале от 20000 вольт
Никола Тесла
Тесла получал ток высокой частоты и высокого напряжения, применяя колебательный разряд конденсатора. Он заметил, что данный вид электрического передатчика пригоден как для производства света, так и для передачи электроэнергии для производства света.
В период с 1891 по 1894 годы ученый многократно демонстрирует беспроводную передачу, и свечение вакуумных трубок в высокочастотном электростатическом поле. При этом отмечая, что энергия электростатического поля поглощается лампой, преобразуясь в свет. А энергия электромагнитного поля, используемая для электромагнитной индукции с целью получения аналогичного результата, в основном отражается, и лишь малая ее доля преобразуется в свет. Даже применяя резонанс при передаче с помощью электромагнитной волны, значительного количества электрической энергии передать не удастся, утверждал ученый. Его целью в этот период работы была передача именно большого количества электрической энергии беспроводным способом.
Вплоть до 1897 года, параллельно с работой Тесла, исследования электромагнитных волн ведут: Джагдиш Боше в Индии, Александр Попов в России, и Гульельмо Маркони в Италии.
Вслед за публичными лекциями Тесла, Джагдиш Боше выступает в ноябре 1894 года в Калькутте с демонстрацией беспроводной передачи электричества, там он зажигает порох, передав электрическую энергию на расстояние.
После Боше, а именно 25 апреля 1895 года, Александр Попов, используя азбуку Морзе, передал первое радиосообщение, и эта дата (7 мая по новому стилю) отмечается теперь ежегодно в России как «День Радио».
В 1896 году Маркони, приехав в Великобританию, продемонстрировал свой аппарат, передав с помощью азбуки Морзе сигнал на расстояние 1,5 километра с крыши здания почтамта в Лондоне на другое здание. После этого он усовершенствовал свое изобретение и сумел передать сигнал по Солсберийской равнине уже на расстояние 3 километра.
Передача энергии на расстоянии для группы людей
Это массовая передача энергии. Она подходит например для такого случая:
Вы находитесь в зале где сидят люди и Вас попросили передать энергию всем находящимся в этом зале. Вы садитесь перед аудиторией, настраиваетсь и передаёте энергию.
Также может быть например такой случай: Вы едете на автобусе и видите, что произошла крупная катастрофа (крушение самолёта, поезда, автобуса и т.д.). Множество раненых людей, и людей в шоковом состоянии, нуждающихся в помощи. Вам потребуется буквально 30 секунд, чтобы помочь им. Вы успеете это сделать даже за то время, пока Ваш автобус проезжает момо этого места катастрофы.
- Проделайте упражнение
«Подготовка к передаче Энергии». - После этого Вы медленно обводите взглядом ту группу людей, которым передаёте энергию.
Это могут быть люди, которые специально пришли к Вам на сеанс, но могут быть и случайные люди, которые,как Вы чувствуете, нуждаются в энергии (например,
Вы проезжаете на машине и видите крупную автокатастрофу с большим числом раненых – проведите сеанс передачи энергии, можно делать даже не останавливая машину – на ходу).
- Передавать энергию можно не более 30 секунд. Если Вы не можете передавать по часам, то передавайте меньше 30 секунд, ориентируясь на внутреннее ощущение времени.
Схема беспроводной передачи электроэнергии
Напряжение «сети» преобразуется в сигнал переменного тока, который затем посылается на катушку передатчика через электронную цепь. Протекающий через обмотку раздатчика, индуцирует магнитное поле. Оно, в свою очередь, может распространяться на катушку приемника, которая находится в относительной близости. Затем магнитное поле генерирует ток, протекающий через обмотку приемного устройства. Процесс, посредством которого энергия распространяется между передающей и приемной катушками, также упоминается как магнитная или резонансная связь. И достигается с помощью обеих обмоток, функционирующих на той же частоте. Ток, текущий в катушке приемника, преобразуется в постоянный с помощью схемы приемника. Затем может использоваться для питания устройства.
Беспроводной путь
Большинство современных жилых домов и коммерческих зданий питаются от сетей переменного тока. Электростанции генерируют электричество переменного тока, которое доставляется в дома и офисы с помощью высоковольтных линий электропередачи и понижающих трансформаторов.
Электричество поступает в распределительный щит, а затем электропроводка доставляет электричество к оборудованию и устройствам, которые мы используем каждый день: светильники, кухонная техника, зарядные устройства и так далее.
Все компоненты стандартизованы. Любое устройство, рассчитанное на стандартные ток и напряжение, будет работать от любой розетки по всей стране. Хотя стандарты разных стран и различаются между собой, в конкретной электрической системе любое устройство будет работать при условии соблюдения стандартов данной системы.
Тут кабель, там кабель… Большинство наших электрических устройств обладает кабелем питания от сети переменного тока.
Перспективы беспроводной передачи электричества
Сейчас ведутся исследовательские работы, и разрабатываются проекты создания электромобилей, которые будут передвигаться по дорожному покрытию с токопроводом, который индуцирует электрический ток в моторе транспорта.
Питание электромобиля
Ряд передовых фирм заняты разработкой беспроводных источников питания, которые смогут снабжать электроэнергией всех потребителей в пределах одного помещения.
В перспективе появление трасс, состоящих из ряда беспроводных источников электричества, которые смогут обеспечить перемещение летательных аппаратов на большие расстояния.
С появлением новых материалов, усовершенствованных приборов и изобретений беспроводная передача электроэнергии в недалёком будущем охватит все сферы деятельности человека.
Преимущества, недостатки и биологическое воздействие
Преимущества
Преимущества беспроводной передачи энергии микроволновым излучением в том, что способ полностью устраняет существующие кабели линий электропередачи высокого напряжения, вышки и подстанции между генерирующей станцией и потребителями и облегчает соединение электрогенерирующих станций в глобальном масштабе.
Способ имеет больше свободы выбора приемника и передатчиков. Даже мобильные передатчики и приемники можно выбрать для этой системы. Стоимость передачи и распределения станет меньше, а стоимость электроэнергии для потребителя также будет снижена. Потери передачи являются незначительными в беспроводной передаче энергии, поэтому эффективность этого способа значительно выше, чем проводная.
Недостатки
Капитальные затраты на практическую реализацию передачи энергии микроволновым излучением кажутся очень высокими и другим недостатком концепции является интерференция СВЧ с существующими системами связи.
Существуют распространенные убеждения, что биологические воздействия микроволнового излучения опасны. Но исследования в этой области неоднократно доказывают, что уровень микроволнового излучения не будет выше дозы, полученной при открытии дверцы микроволновой печи, то есть он немного выше, чем выбросы, создаваемые сотовыми телефонами. Сотовые телефоны работают с высокими плотностями мощности. Таким образом, воздействие микроволновым излучением также будет ниже существующих руководящих принципов безопасности.