Эффект и элемент пельтье

Самый популярный модуль Пельтье TEC1-12706

Самым популярным среди практиков, увлеченных идеями свободной природной энергии и производителей технических устройств является элемент размером 40 на 40 миллиметров с маркировкой TEC1-12706.  Это означает, что он состоит из 127 пар малюсеньких термоэлементов – полупроводников разного типа, которые попарно соединены при помощи медных перемычек в последовательную цепь и рассчитаны на постоянный ток до 5 А при напряжении 12 вольт.

Схема Элемента Пельтье

Некоторые думают что модули Peltier, это что-то типа солнечных панелей – ведь они такие же плоские, торчат проводки, и те и другие могут генерировать электрический ток. Увы, это не совсем так на самом деле. Чтобы понять, как функционируют загадочные пластинки, посмотрите видео И. Белецкого, описание в текстовом формате ниже.

Как оптимизировать работу холодильной машины на элементах Пельтье

На рисунках представлены графики величин, влияющих на КПД элементов Пельтье. Первое, что бросается в глаза – коэффициент термо-ЭДС стремится к нулю по мере роста концентрации носителей заряда. Это напоминает, что металлы не считаются лучшим материалом для создания термопар. Теплопроводность, напротив, возрастает. В термодинамике считается, что она слагается из двух компонентов:

  1. Теплопроводность кристаллической решётки.
  2. Теплопроводность электронная. Указанная составляющая по очевидным причинам зависит от концентрации свободных носителей заряда и обусловливает рост кривой на представленном графике. Теплопроводность кристаллической решётки остаётся практически постоянной.

Исследователей интересует произведение квадрата коэффициента термо-ЭДС на электропроводность. Упомянутая величина стоит в числителе выражения для холодильного коэффициента. Согласно данным, экстремум наблюдается при концентрации свободных носителей в районе 10 в 19 степени единиц на кубический сантиметр. Это на три порядка меньше, чем отмечается в чистых металлах, откуда прямо следует заключение, что идеальным материалом для элементов Пельтье станут полупроводники.

Доля второй компоненты уже сравнительно невелика в меньшую сторону по оси абсцисс, допускается брать и материалы из этого интервала. Электропроводность диэлектриков слишком мала, что объясняет невозможность их применения в данном контексте. Все это позволяет установить причину, почему выводы Альтенкирха не воспринимаются всерьёз.

Принцип действия

Внешний вид элемента Пельтье. При пропускании тока тепло переносится с одной стороны на другую.

В основе работы элементов Пельтье лежит контакт двух полупроводниковых материалов с разными уровнями энергии электронов в зоне проводимости. При протекании тока через контакт таких материалов, электрон должен приобрести энергию, чтобы перейти в более высокоэнергетическую зону проводимости другого полупроводника. При поглощении этой энергии происходит охлаждение места контакта полупроводников. При протекании тока в обратном направлении происходит нагревание места контакта полупроводников, дополнительно к обычному тепловому эффекту.

При контакте металлов эффект Пельтье настолько мал, что незаметен на фоне омического нагрева и явлений теплопроводности. Поэтому при практическом применении используется контакт двух полупроводников.

Элемент Пельтье состоит из одной или более пар небольших полупроводниковых параллелепипедов — одного n-типа и одного p-типа в паре (обычно теллурида висмута Bi2Te3 и твёрдого раствора SiGe), которые попарно соединены при помощи металлических перемычек. Металлические перемычки одновременно служат термическими контактами и изолированы непроводящей плёнкой или керамической пластинкой. Пары параллелепипедов соединяются таким образом, что образуется последовательное соединение многих пар полупроводников с разным типом проводимости, так чтобы вверху были одни последовательности соединений (n->p), а снизу противоположные (p->n). Электрический ток протекает последовательно через все параллелепипеды. В зависимости от направления тока верхние контакты охлаждаются, а нижние нагреваются — или наоборот. Таким образом электрический ток переносит тепло с одной стороны элемента Пельтье на противоположную и создаёт разность температур.

Если охлаждать нагревающуюся сторону элемента Пельтье, например при помощи радиатора и вентилятора, то температура холодной стороны становится ещё ниже. В одноступенчатых элементах, в зависимости от типа элемента и величины тока, разность температур может достигать приблизительно 70 °C.

Как работает элемент Пельтье

Представим, что электрический ток проходит через термическую пару, как показано на рисунке 2.

Принцип работы элемента Пельтье

В этом случае происходит процесс поглощения энергии тепла на полупроводниковом контакте n — p и процесс выделения тепловой энергии на p — n контакте. В итоге часть термопары полупроводника, который сопрягается с n — p контактом, будет охлаждаться, а вторая часть с другой противоположной стороны — соответственно, нагреваться.

В том случае, когда поменяем полярность по току, то происходит процессы нагревания и охлаждения, соответственно, также поменяются.

Обратный процесс эффекта Пельтье приводит к тому, что при подводе теплоты к одной стороне термопреобразователя получают энергию электрического тока.

Конечно на практике, применение одной термопары не хватает для полного отвода тепловой энергии, поэтому в преобразователе применяют большое количество. Электрическая цепь собирается из термопар последовательно. В то же время в конструкции термопреобразовательных элементов: нагревающие термопары располагаются на другой стороне относительно охлаждающих.

Устройство элемента Пельтье очень простое. Термические пары конструируются между двумя платинами, выполненными из керамики. Соединение термопар производится медными проводниками (шинами). Количество термопар определяется назначением термопреобразователя, его мощности и места установки и может применяться от одной до нескольких сотен штук.

Устройство элемента Пельтье

Основными элементами термопреобразователя являются: полупроводники р — типа, n — типа, керамические пластины, медные сопряжения — проводники; контакты подвода электрического тока «плюс» и «минус». Для элемента Пельтье разница по температурам разных краев термопар достигает до 70 градусов по Цельсию. Чтобы увеличить данную разницу требуется увеличить каскад последовательного включения термопар.

Устройство и принцип работы

Современные модули представляет собой конструкцию, состоящую из двух пластин-изоляторов (как правило, керамических), с расположенными между ними последовательно соединенными термопарами. С упрощенной схемой такого элемента можно ознакомиться на представленном ниже рисунке.

Устройство модульного элемента Пельтье

Обозначения:

  • А – контакты для подключения к источнику питания;
  • B – горячая поверхность элемента;
  • С – холодная сторона;
  • D – медные проводники;
  • E – полупроводник на основе р-перехода;
  • F – полупроводник n-типа.

Конструкция выполнена таким образом, что каждая из сторон модуля контактирует либо p-n, либо n-p переходами (в зависимости от полярности). Контакты p-n нагреваются, n-p – охлаждаются (см. рис.3). Соответственно, возникает разность температур (DT) на сторонах элемента. Для наблюдателя этот эффект будет выглядеть, как перенос тепловой энергии между сторонами модуля. Примечательно, что изменение полярности питания приводит к смене горячей и холодной поверхности.

Рис. 3. А – горячая сторона термоэлемента, В – холодная

Эффекты термоэлектричества

21 июля 1820 года считается поворотной точкой развития истории: Эрстед решился опубликовать свои наблюдения о влиянии провода с током на ориентацию магнитной стрелки в пространстве. Дальнейшие открытия следуют чередой, нас интересует изобретение первого гальванометра. Изготовитель, Швейггер, назвал прибор мультипликатором за способность умножать результат действия на магнитную стрелку нескольких витков провода, несущего ток. Благодаря этому годом позже (1821) физик эстонского происхождения Зеебек открыл термоэлектричество. Общеизвестно, что случившееся помогло пятью годами позже Георгу Ому получить всемирно известный закон.

Ом Георг

Литература говорит, что Зеебек в качестве детектора использовал соленоид с многочисленными витками проволоки и магнитную стрелку. История умалчивает, как к учёному попала спайка висмут-сурьма, но повествует, что учёный подключил тандем в качестве источника питания и видел колебания компаса постоянно, когда брал термопару в руки. Вероятно, оказался близок к открытию собственных сверхспособностей, но в результате к выводу, что виновато тепло рук. Больших результатов учёный добился, используя осветительную лампу в качестве источника тепла.

Зеебек неправильно истолковал результат опыта, назвав открытие магнитной поляризацией: смещение точки нагрева на другой конец изменяло направление отклонения стрелки. В результате выстроилась неправильная теория. Стали утверждать, что температурой возможно непосредственно получить магнитные свойства, а поле Земли обусловлено деятельностью вулканов. Георг Ом уже вскоре после описанного открытия применил термо-ЭДС для вывода известного закона, а в 1831 году подобный источник использовался в опытах по электролизу.

Величина термо-ЭДС невелика. Обычно десятки мВ. Если требуется найти конкретное значение, пользуются таблицами. Эталоном для температур диапазона климата Земли служит платина. Таблицы содержат значение термо-ЭДС для термопар из указанного металла и исследуемого: хромель, алюмель, меди, железо. Значения бывают положительными и отрицательными. К примеру, для сурьмы это +4,7 мВ, а для висмута – минус 6,5. Значения складываются и становится ясно, что при разнице температур на концах пары в 100 градусов образуется ЭДС в 12,2 мВ. Георг Ом подобные условия и пытался создать, погрузив первый конец в лёд, а второй – в кипящую воду.

Эффект термоэлектричества

Справочные таблицы иногда содержат множество значений. К примеру, для разных температур с шагом в 100 градусов. Тогда удаётся посчитать значения для каждой, но и с замещением нуля на любую из указанных температур. Берётся разность между большим и меньшим значением. У отдельных термопар при определённой температуре направление термо-ЭДС меняется на противоположное. К примеру, для меди и железа граничной точкой станет 540 градусов Цельсия.

Эффект с позиций термодинамики

Эффект Пельтье описывается формулой, показывающей, какая энергия переносится при определённой величине электрического тока. Выражая её во временных единицах, находят мощность устройства, исходя из которой определяют потребности холодильника. Сегодня популярны бесшумные элементы Пельтье для кулеров процессоров. Небольшая пластина охлаждает кристалл и охлаждается радиатором кулера. Элемент Пельтье служит тепловым насосом, гарантированно отводящим тепло от центрального процессора, не давая перегреваться.

В формуле на рисунке через альфа обозначены коэффициенты термо-ЭДС половинок (составных частей) элемента. Т – рабочая температура в градусах Кельвина. В каждом элементе, как правило, присутствует побочный эффект Томсона: если по проводнику течёт ток, и вдоль линии имеется градиент (направленная разница) температур, станет, помимо джоулевой, выделяться и иная теплота. Последняя носит имя Томсона. В отдельных участках цепи энергия станет поглощаться. Значит, эффект Томсона оказывает сильное влияние на работу нагревателей и холодильников. Но является, как уже сказано, побочным, неучтённым фактором.

Теплота, переносимая эффектом Томсона, прямо пропорциональна разнице температур на концах проводника и зависит от величины протекающего тока. Явление проявляется лишь в веществах с ярко выраженной зависимостью коэффициента термо-ЭДС от температуры. В некоторых расчётах эффект Томсона считается нулевым, это близко к истине. В термодинамической теории процесс отдачи и отбора тепла рассматривается с точки зрения двух тепловых потоков:

Поток тепла, забираемый охлаждающимся спаем, сопровождается двумя параллельно идущими процессами:

  1. Паразитное выделение тепла по закону Джоуля-Ленца. В термодинамике берётся как половина произведения квадрата тока на сопротивление. Вторая половина падает на горячем спае.
  2. Поток нагрева теплом, идущим от тёплой части. Равен разнице температур, перемноженной с полной теплопроводностью ветвей термоэлемента.

На горячем спае идут обратные процессы по второму пункту (тепло уносится к охлаждаемой части) и аналогичные по первому – выделяется джоулева теплота.

Из формулировок следует, что действенным решением добиться максимального КПД станет теплоизоляция между спаями. В паре используются полупроводники, способные генерировать термо-ЭДС, электрическому току приходится преодолевать её сопротивление. Затрачиваемая энергия пропорциональна разнице температур и разнице коэффициентов термо-ЭДС веществ и зависит от протекающего тока. Графики зависимости представляют кривые, и дифференцируя их с целью найти экстремумы, возможно получить условия достижения максимальной разницы температур (между комнатой и холодильником).

На рисунках показаны результаты операции взятия производной, где вычислены оптимальные токи для сопротивления R термопары и предельного увеличения холодильного эффекта. Из указанных формул следует, что идеальная машина получится, если:

  • Электропроводность материалов термопары одинакова.
  • Теплопроводность материалов термопары одинакова.
  • Коэффициенты термо-ЭДС одинаковы, но противоположны по знаку.
  • Сечения и длины ветвей термопары одинаковы.

Реализовать эти условия на практике сложно. В этом случае предельный холодильный коэффициент равен отношению температуры холодного спая, к разнице температур. Напомним, это характеристика идеальной машины, в реальности пока недостижимая.

Эффект Пельтье:

Прямое преобразование электрической энергии в тепловую (нагрев, охлаждение) и наоборот – термоэлектрический эффект были открыты в 1821 году Томасом Иоганном Зеебеком, в 1834 году Жаном-Шарлем Пельтье, в 1858 году Уильям Томсоном (Кельвином). Соответственно и получили названия термоэлектрические эффекты (явления) по имени их открывателей: эффект Зеебека,  эффект Пельтье, эффект Томсона.

Эффект Пельтье заключается в том, что при прохождении электрического тока через контакт (спая) двух проводников, сделанных из различных (разнородных) материалов, помимо традиционного джоулева тепла, выделяется или поглощается (в зависимости от направления тока) дополнительное тепло. Дополнительное тепло (которое выделяется или поглощается) получило название тепла Пельтье.

Количество выделяемой или поглощаемой дополнительной теплоты пропорционально силе тока и также зависит от материалов выбранных проводников.

Тепло Пельтье выражается формулой:

Q = ПАВ·I·t,

где:

Q – количество выделенного или поглощённого тепла,

I – сила тока,

t – время протекания тока,

П – коэффициент Пельтье.

В свою очередь коэффициент Пельтье находится через уравнение:

П = α·Т,

где:

α – коэффициент Томсона,

Т – абсолютная температура, выраженная в K.

Как видно из формулы коэффициент Пельтье находится в существенной зависимости от температуры. Некоторые значения коэффициента Пельтье для различных пар металлов представлены в таблице.

Значения коэффициента Пельтье для различных пар металлов
Железо-константан Медь-никель Свинец-константан
T, К П, мВ T, К П, мВ T, К П, мВ
273 13,0 292 8,0 293 8,7
299 15,0 328 9,0 383 11,8
403 19,0 478 10,3 508 16,0
513 26,0 563 8,6 578 18,7
593 34,0 613 8,0 633 20,6
833 52,0 718 10,0 713 23,4

Эффект Пельтье более заметен у полупроводников, чем у металлов. Для металлов коэффициент Пельтье составляет от 10-2 до 10-3 В, для полупроводников – от 3·10-1 до 10-3 В.

Эффект Пельтье по сути противоположен ранее открытому эффекту Зеебека (термоэлектрический эффект). Суть эффекта Зеебека сводится к тому, что в замкнутой цепи, состоящей из соединенных разнородных проводников, между которыми в месте контакта имеется градиент температуры, возникает электрический ток.

Эффект Пельтье имеет довольно низкий КПД. Несмотря на это были созданы устройства, работающие на эффекте Пельтье – термоэлектрические элементы, которые нашли широкое применение в измерительной, вычислительной, а также бытовой технике (мобильные холодильные установки, небольшие генераторы для выработки электричества, системы охлаждения в бытовых приборах, осушители воздуха и т.д.).

Примечание: Фото https://www.pexels.com, https://pixabay.com

Как возможно научиться писать тексты и зарабатывать на этом удаленно? Например, можете пройти курс «Копирайтинг от А до Я», который подойдет даже начинающим авторам.

Другие записи:

карта сайта

Коэффициент востребованности
62

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector