Плавное включение светодиодной лампы
Содержание:
- Реле ходовых огней 12, 24В Блок ДХО DRL ближний, дальний
- Схемы плавного включения и выключения светодиодов
- Подключение своими руками
- Для чего используется
- По какому принципу работает схема
- Можно ли сделать своими руками
- Способы реализации плавного включения
- Метки: освещение, плафон, плавный пуск
- Варианты схем
- Элементы схемы
- Критерии выбора и стоимость
- Основные выводы
Реле ходовых огней 12, 24В Блок ДХО DRL ближний, дальний
Новости Главные Новости Hyundai Остальные. Отзывы Отзывы Solaris new Отзывы Solaris Эксплуатация Solaris new Solaris Противоугонные системы. Мануалы Регламент ТО Руководство по ремонту и обслуживанию new. Имя Пароль.
Рекомендуем Вам пройти регистрацию или войти в Ваш аккаунт , чтобы полноценно использовать все доступные инструменты для покупки, продаж и общения на сайте. Во всех разделах Совместные покупки и заказы Детские товары Детская одежда и обувь Женская одежда и обувь Мужская одежда и обувь Красота и уход Товары для дома, отдыха, праздника Канцтовары, книги, арт Услуги, работа Животные, растения, аксессуары Другое Куплю, обмен, отдам, спрос.
Схемы плавного включения и выключения светодиодов
Существует два популярных и доступных для самостоятельного изготовления варианта схем плавного розжига для светодиодов:
- Простейшая.
- С функцией установки периода пуска.
Рассмотрим, из каких элементов они состоят, каков алгоритм их работы и главные особенности.
Простая схема плавного включения выключения светодиодов
Только на первый взгляд схема плавного розжига, представленная ниже, может показаться упрощенной. В действительности она весьма надежна, недорога и отличается множеством преимуществ.
В ее основе лежат следующие комплектующие:
- IRF540 – транзистор полевого типа (VT1).
- Емкостный конденсатор на 220 мФ, номиналом на 16 вольт (C1).
- Цепочка резисторов на 12, 22 и 40 килоОм (R1, R2, R3).
- Led-кристалл.
Устройство работает от источника питания постоянного тока на 12 В по следующему принципу:
- При запитывании цепи через блок R2 начинает течь ток.
- Благодаря этому элемент C1 постепенно заряжается (повышается номинал емкости), что в свою очередь способствует медленному открыванию модуля VT.
- Увеличивающийся потенциал на выводе 1 (затворе полевика) провоцирует похождение тока через R1, что способствует постепенному открыванию вывода 2 (стока VT).
- Как результат, ток переходит на исток полевого блока и на нагрузку и обеспечивает плавный розжиг светодиода.
Процесс угасания лед-элемента идет по обратному принципу – после снятия питания (размыкания «управляющего плюса»). При этом конденсаторный модуль, постепенно разряжаясь, передает потенциал емкости на блоки R1 и R2. Скорость процесса регламентируется номиналом элемента R3.
Основным элементом в системе плавного розжига для светодиодов является транзистор MOSFET IRF540 полевого n-канального типа (как вариант можно использовать российскую модель КП540).
Остальные компоненты относятся к обвязке и имеют второстепенное значение. Поэтому нелишним будет привести здесь его основные параметры:
- Сила тока стока – в пределах 23А.
- Значение полярности – n.
- Номинал напряжения сток-исток – 100В.
Доработанный вариант с возможностью настройки времени
Нередко возникает необходимость изменения периода плавного розжига светодиодов. Рассмотренная выше схема не дает такой возможности. Поэтому в нее нужно внедрить еще два полупроводниковых компонента — R4 и R5. С их помощью можно задавать параметры сопротивления и тем самым контролировать скорость зажигания диодов.
Приведенные выше версии схем предполагают управление по плюсу, однако в некоторых ситуациях требуется контроль по минусу. В таком случае система будет иметь обратную полярность. Поэтому в ней нужно поставить конденсатор наоборот – чтобы плюсовой заряд шел на транзисторный исток. Кроме того, необходимо заменить и сам транзистор, теперь он должен быть p–канального типа, к примеру, IRF9540N.
Подключение своими руками
В первую очередь, нужно сказать, что разобрав диммер, каждый сможет понять, что его подключение не сложнее, чем обычного выключателя.
Давайте составим пошаговую инструкцию, пользуясь которой, каждый сможет получить желаемый результат:
Первый и самый важный шаг – обесточить розетку
Это мера безопасности, ведь работать необходимо с оголенными проводами, а получить удар 220в – не самое приятное.
Ослабляем винты на клеммах.
Далее подключаем 2 провода выключателя, к проводам от старого выключателя (важно не забывать и соблюдать полярность, иначе, в лучшем случае, все придется переделывать).
Снимаем верхнюю рамку и устанавливаем устройство со специально отведенное место в стене.
Привинчиваем винты монтажных лапок.
Крепим верхнюю рамку (коробку).. После этого можно подключать электричество, и проверить результат
Процедура легкая и не займет более 10-15 минут. Но если нет уверенности, то необходимо пригласить мастера, который за небольшую плату сделает все сам
После этого можно подключать электричество, и проверить результат. Процедура легкая и не займет более 10-15 минут. Но если нет уверенности, то необходимо пригласить мастера, который за небольшую плату сделает все сам.
Для чего используется
Одной из причин, приводящих к поломке ламп накаливания, является резкий скачок тока, который происходит при включении. Этот факт нужно учитывать, отвечая на вопрос, как работает плавное включение ламп.
Если вольфрамовая нить лампы не нагрета, оставаясь в холодном состоянии, то у нее все равно присутствует некоторое сопротивление. Причем его величина достаточно высока, например для изделия с мощностью 75 Вт она равна 52,4 Ом. Можно рассчитать, что при стандартном напряжении в 220 В сила тока составит 4,19 А.
Теперь важно понять, что такой ток будет протекать определенный отрезок времени. Примерно он равен чуть менее секунды и зависит от того, как прогревается вольфрамовая нить.
Как только ее температура возрастает, одновременно увеличится сопротивление. В результате сила тока будет многократно ниже первоначальной, пусковой величины.
По какому принципу работает схема
Для неопытного мастера, который впервые увидит схему плавного розжига и затухания светодиодов, она может показаться сложной, но это не так. Кроме своей простоты, она отличается надёжностью и невысокими затратами на реализацию.
Рис.1 – схема для осуществления плавного возгорания диодов.
Сначала ток подаётся на второй резистор, таким образом обеспечивается зарядка конденсатора C1. На конденсаторе показатели не изменяются мгновенно, за счет чего происходит плавное открытие транзистора в VT1. К затвору ток подаётся через первый резистор. Это провоцирует рост потенциала (положительного) на полевом транзисторе (его стоке). За счет этого светодиод включается плавно.
Когда происходит отключение, это приводит к обрыву соединений. Конденсатор постепенно разрядится, передавая энергию на резисторе R1 и R3. Скорость разрядки определяют по номиналу третьего резистора. Величина показателя сопротивления, определяет полученную энергию транзистором. То есть насколько быстро будет происходить затухание или розжиг.
Можно ли сделать своими руками
Плату по описанной выше схеме можно сделать своими силами. Но, если нет опыта работы с транзисторами, светодиодами и резисторами, лучше приобрести блок в магазине. Сборка своими руками обойдётся намного дешевле. Если знать все тонкости, на работу уйдёт не более 1 часа. Для этого следует знать, как подобрать необходимые элементы и иметь оборудование, чтобы качественно выполнить соединения.
Что понадобиться для работы
Для изготовления устройства для плавного розжига светодиодов своими руками понадобится следующее:
- припой и паяльник;
- светодиоды;
- резисторы;
- конденсатор;
- транзисторы;
- корпус для размещения необходимых элементов;
- для создания платы требуется кусок текстолитового листа.
Рис.2 – текстолитовый лист для пайки.
Ёмкость рекомендуемого конденсатора – 220 mF. Напряжение не более 16V. Номиналы резистора:
- R1 – 12 kOm;
- R2 – 22 kOm;
- R3 – 40 kOm.
При сборке блоке желательно использовать полевой транзистор «IRF540».
Пошаговая инструкция изготовления своими руками
Для создания блока с плавным розжигом мастер должен уметь паять и знать принцип работы схемы и каждого из её элементов. Первый этап – это изготовление платы. Для начала на текстолите необходимо обозначить границы. После этого можно начать вырезать лист по контурам. Далее заготовку следует проштукатурить с помощью наждачной бумаги (зернистость P800-1000).
На следующем этапе нужно распечатать схему (слой с дорожками). Для этого используют лазерный принтер. Такую схему для распечатки можно найти в интернете. Лист А4 малярным скотчем приклеивается к глянцевой бумаге (например, с журнала). Затем следует приступить к распечатке изображения.
Рис.3 – схема после распечатки.
На лист схема приклеивается с помощью прогревания утюгом. Чтобы плата остыла, её нужно поместить в холодную воду на несколько минут, и после этого, снять бумагу. Если сразу она не отслаивается, это необходимость делать постепенно, сдирая пальцами.
Теперь понадобится двусторонний скотч чтобы приклеить плату к пенопласту такого же размера и поместить в раствор хлорного железа на 5-7 минут. Чтобы не передержать плату, её нужно периодически доставать и смотреть на состояние. Для ускорения процесса вытравливания можно иногда покачивать емкость с жидкостью. Когда лишняя медь стравиться, плату необходимо отмыть в воде.
Рис.4 – плата в растворе хлорного железа.
Следующий этап – это зачистка дорожек с помощью наждачной бумаги. Далее можно приступать к просверливанию дырочек для установки элементов платы. Для этого подойдут сверла диаметром до 1 см. Далее плату нужно облудить. Для этого её можно смазать флюсом, после чего облудить паяльником. Чтобы не спровоцировать перегрев или разрыв цепи, паяльник постоянно должен находиться в движении.
Рис.5 – подготовленная плата к установке элементов.
Следующий этап – это установка элементов по схеме. Чтобы было понятнее, на бумаге можно распечатать ту же схему, но со всеми необходимыми обозначениями. После пайки необходимо полностью избавиться от флюса. Для этого плату можно протереть растворителем 646. Затем её можно прочистить зубной щеткой. Когда блок хорошо просохнет, следует приступить к проверке. Для этого постоянный плюс и минус необходимо подключить к питанию. При этом, управляющей плюс трогать не стоит.
Рис.6 – проверка корректности работы платы.
Вместо светодиодов для проверки лучше использовать мультиметр. Если возникнет напряжение, это значит, что плата коротит. Это может происходить из-за остатков флюса. Чтобы избавиться от проблемы, достаточно прочистить плату ещё раз. Если напряжения нет, блок готов к использованию.
Способы реализации плавного включения
Прежде чем определиться со способами реализации плавного запуска, необходимо выяснить, как работают УВПЛ. Принцип действия приборов этого типа основывается на способности сначала понижать, а затем постепенно повышать напряжение до оптимальной величины. Устройство подключается в разрыв провода между лампой (светильником) и выключателем.
При подаче напряжения его величина повышается за счет схем плавного запуска. Они могут быть собраны на транзисторах, симисторах или тиристорах по схемам ФИР (фазоимпульсный регулятор). Скорость повышения напряжения может варьироваться в пределах нескольких секунд: многое зависит от того, по какой схеме был собран прибор. Мощность нагрузки чаще всего не превышает 1400 Вт.
Блок питания
Блок защиты выступает в роли устройства, обеспечивающего плавное включение. Применение приспособления одновременно с лампой позволяет постепенно понизить напряжение, поступающее к осветительному прибору. Вольфрамовая нить в этом случае не испытывает большой нагрузки, что позволяет продлить ее срок эксплуатации.
По мере того, как электрический ток проходит сквозь блок, напряжение падает (с 220 В до 170 В). Скорость варьируется в пределах 2-4 секунд. Использование блока защиты по назначению приводит к снижению потока света на 50-60%. Устройства Uniel Upb-200W-BL выдерживают до 220 В, поэтому необходимо подключать к ним лампочки такой же мощности.
Устройство можно устанавливать рядом с выключателями или приборами освещения.
Устройство плавного включения
Механизм действия устройства плавного включения ламп накаливания (УПВЛ) такой же, как и у защитных блоков. Прибор имеет весомое преимущество – небольшой размер, поэтому его можно устанавливать в подрозетник (за выключатель), внутри распределительной коробки и потолочной лампы (под колпак). Подключение УПВЛ должно осуществляться последовательно, начиная с соединения прибора к фазному проводнику.
Диммирование
Диммеры обладают способностью регулировать электрический ток, поэтому эти приборы часто устанавливают в жилых помещениях. Устройства меняют яркость света, который дают галогеновые, светодиодные или лампы накаливания.
Реостат или переменный резистор считают простейшим диммером. Прибор был изобретен в 1847 году Кристианом Поггендорфом. С его помощью можно регулировать силу электрического тока и напряжение. Устройство состоит из нескольких деталей:
- проводник;
- регулятор сопротивления.
Сопротивление меняется плавно. Чтобы уменьшить яркость света, напряжение снижают. В этом случае величины, обозначающие силу тока и сопротивление, будут высокими, что спровоцирует перегрев осветительного прибора.
К диммерам относят также автотрансформаторы. У этих приборов коэффициент полезного действия достаточно высок. Напряжение подается неискаженным, частота оптимальная – не более 50 Гц. Существенный минус автотрансформатора – большой вес. Чтобы управлять ими, человек должен приложить максимум усилий.
Электронный вариант – наиболее простой и доступный прибор, с помощью которого можно контролировать силу тока. Основная деталь компактного устройства – переключатель (ключ), которым управляют тиристорными, симисторными и транзисторными полупроводниками.
Выделяют несколько способов регулирования диммера:
- по переднему фронту;
- по заднему фронту.
Подающееся на лампы накаливания напряжение можно регулировать обоими способами.
Метки: освещение, плафон, плавный пуск
Комментарии 43
подскажите, а биполярный транзистор подойдёт сюда(КТ837Д)?
а печатку в спринте рисовал? если да, то можешь мне скинуть?
Вечером посмотрю на домашнем компьютере, если осталась то скину.
в качестве дружеской критики: 1. вместо никнейма лучше було бы оставить полигон для тепло-отвода, да и вообще развести плату так, чтобы травить не надо было, а можно было бы расчертить канц.ножом на изолированные площадки 2. провода к плате не паять, а присоединять разъемом — когда захотите улучшить девайс, можно было просто его заменить
Тепло-отвод явно лишнее…Транзистор мощный, а диоды в плафоне потребляют совсем чуть чуть. Оно выше температуры окружающей среды и не нагревается. По поводу разметки платы канц ножом — ну не люблю я такой колхоз. Лучше потрачу лишние пол часа — час, но сделаю все красиво. Разъем стоит, только не на самой плате, а на пяти сантиметровом отрезке проводов. Так удобнее размещать устройство под потолком — сначала прилепил как надо, а потом и провода соединил.
а каким способом ты травил плату? каким наносил на тексталит ее?
Дорожки наносил с помощью фоторезиста. Травил в растворе перекиси водорода, соли и лимонной кислоты.
а я помню, раньше лаком дорожки рисовал… травил в хлорном железе))) так уже не делают?))) ппц я отстал…
Ну лаком сейчас уже наверное точно никто не рисует, проще тем же ЛУТом сделать. А вот хлорное железо я сам до недавнего времени использовал, пока не узнал про способ с перекисью водорода — и достать проще, и дешевле, да и все вокруг не пачкает)))
а каким способом ты травил плату? каким наносил на тексталит ее?
ТекстОлит. А вообще-то — это стеклотекстолит.
ну все, с умничал…
Нравится быть не грамотным — оставайтесь…
а вы часто пользуетесь текстолитом? раз тут оказался стеклотекстолит… я думаю и так понятно, что это за материал… ошибка в названии — да, запомнил как правильно. но. ошибкой не считаю, что материал для плат называю просто текстолитом. думаю многие так и говорят, что б не удлинять и так понятное слово. это как всегда добавлять аккумулятор свинцово-кислотный в машине. думаю и вы не добавляете. стеклотекстолит = текстолит. суть того, о чем идет речь ничуть не меняется.
Дело в том, что текстолит — это ткань пропитанная клеем. Он коричневого цвета. www.ru.all.biz/img/ru/catalog/2068698.jpeg Он не металлизируется и не используется для производства печатных плат.
А стеклотекстолит — это стеклоткань пропитааная эпоксидной смолой, он светоложёлтого цвета. И свойства материалов сильно отличаются.
Ещё в качестве диэлектрика для печатных плат используют гетинакс — это бумага, пропитанная клеем. Тоже, кстати, коричневого цвета.
В бытовой технике часто используется гетинакс (ранее преимущественно, только гетинакс использовался). Стеклотекстолит стал его вытеснять пару десятилетий назад.
Да, я давно занимаюсь электроникой, 40 лет уже. Первую печатную плату разработал и изготовил в возрасте 12 лет, т.е. в 1982 году…
Варианты схем
В магазинах предлагается широкий выбор устройств плавного пуска для ламп от российских и зарубежных производителей. Монтаж не требует особой квалификации. Нужно сделать разрыв провода фазы, ведущего к лампе накаливания, и подключить прибор при помощи клеммников.
При отсутствии клеммников провода спаиваются.
Чаще всего на производствах используется одна из трех схем:
- туристорная;
- симисторная;
- специализированная (обычно микросхема КР1182ПМ1или DIP8).
В сети 220 В
Самая простая схема плавного включения ламп туристорная.
Для самостоятельного изготовления требуются:
- лампа накаливания;
- 4 диода (для создания выпрямительного моста);
- туристор;
- конденсатор (10 мкФ);
- 2 резистора (один из них переменной емкости).
Время включение определяет переменное сопротивление.
В момент включения ток проходит через лампочку, выпрямляется мостом, проходит через резистор и начинает скапливаться в конденсаторе. После достижения определенного порога зарядки ток подается на туристор, он немного открывается. По мере наполнения конденсатора туристор открывается все больше, лампочка постепенно загорается. Максимальная мощность света достигается при полной зарядке конденсатора.
Лампочки накаливания рассчитаны на 220 В (на практике может быть до 240 В). Диоды и туристор выбираются, базируясь на этот показатель. При самостоятельном изготовлении необходимо учесть, что можно использовать любые диоды с напряжением от 300 В и туристор, способный выдерживать мощность от 2 кВт. Емкость накопителя тоже большого значения не имеет
Важно знать, что при ее уменьшении лампочка будет зажигаться быстрее
Использование симистора (попупроводникового ключа) позволяет уменьшить количество элементов в туристорной схеме.
Используется:
- дроссель;
- 2 резистора;
- конденсатор;
- диод;
- симистор.
По принципу действия эта схема мало отличается от предыдущей. Время включения определяет цепочка из резистора и конденсатора, которые подключены через диод. По мере наполнения емкости конденсатора постепенно открывается симистор, через который подпитана лампочка накаливания. Она загорается не мгновенно, а плавно. Такой прибор более удобен в использовании благодаря небольшим размерам.
Плавный пуск ламп при помощи приборов, созданных на основе микросхемы КР1182ПМ1(DIP8), можно использовать с источниками освещения, обладающими мощностью до 150 Ватт.
Основа этого прибора – 2 туристора и 2 системы управления. Время регулируется резистором и конденсатором. Силовую часть от управляющей отделяет симистор, подключенный через задающий ток резистор. Работу внутренних туристоров регулируют 2 наружных конденсатора, от помех, создаваемых сетью, защищает дополнительный конденсатор и резистор.
При использовании этой схемы свет не только плавно включается, но и плавно выключается. Длительность загорания и затухания регулируется подбором емкости конденсаторов.
Плавное включение обладает существенным недостатком – снижением яркости светового потока. Для достижения оптимального уровня освещения требуются лампы с максимальной мощностью.
Для одноклавишных выключателей существует схема на основе транзистора. Когда лампочка накаливания выключена, он закрыт. После включения напряжение через резистор и диод поступает на конденсатор, он начинает заряжаться. Максимальный уровень (9,1 В) ограничивает стабилитрон.
После достижении оптимального напряжения транзистор начинает открываться, нить накаливания лампочки, подключенной последовательно, постепенно нагревается. Обязателен второй резистор у конденсатора, обеспечивающий его разрядку после выключения. Основное преимущество использования транзистора – отсутствие мерцания лампочки накаливания.
При напряжении 12 В
Если светильник точечный, то используется трансформатор, преобразующий 220 вольт в 12 вольт. Для подключения к 12 В устройства плавного пуска он устанавливается перед преобразователем напряжения.
Если такой прибор необходим для автомобиля, требуются специальные схемы – импульсные или линейные (ШИМ-регуляторы).
Линейные подключаются к источникам света параллельно. После включения ток проходит через резистор, лампы тусклые. После подключения реле они загораются на всю мощность.
Резистор должен быть керамический, мощность примерно 5 Вт, сопротивление 0,1-0,5 Ом.
Импульсные схемы создаются на основе полевого транзистора, подающего ток короткими импульсами. За счет этого нити накаливания не нагреваются до уровня, при котором возможен разрыв. В перерывах между импульсами ток успевает равномерно распределиться по нити, выравнивая сопротивление.
Элементы схемы
Главный элемент управления – мощный n-канальный МОП транзистор IRF540, ток стока которого может достигать 23 А, а напряжение сток-исток – 100В. Рассматриваемое схемотехническое решение не предусматривает работу транзистора в предельных режимах. Поэтому радиатор ему не потребуется.
Сопротивление R2 отвечает за плавный розжиг светодиодов. Его значение должно быть в пределах 30–68 кОм и подбирается в процессе наладки исходя из личных предпочтений. Вместо него можно установить компактный подстроечный многооборотный резистор на 67 кОм. В таком случае можно корректировать время розжига с помощью отвертки.
Сопротивление R3 отвечает за плавное затухание светодиодов. Оптимальный диапазон его значений 20–51 кОм. Вместо него также можно запаять подстроечный резистор, чтобы корректировать время затухания. Последовательно с подстроечными резисторами R2 и R3 желательно запаять по одному постоянному сопротивлению небольшого номинала. Они всегда ограничат ток и предотвратят короткое замыкание, если подстроечные резисторы выкрутить в ноль.
Сопротивление R1 служит для задания тока затвора. Для транзистора IRF540 достаточно номинала 10 кОм. Минимальная емкость конденсатора С1 должна составлять 220 мкФ с предельным напряжением 16 В. Ёмкость можно увеличить до 470 мкФ, что одновременно увеличит время полного включения и выключения. Также можно взять конденсатор на большее напряжение, но тогда придется увеличить размеры печатной платы.
Критерии выбора и стоимость
Приходя в магазин, глаза «разбегаются» от обилия выбора:
- Прежде всего, нужно определиться с целью покупки, а точнее с целевым использованием устройства. Возможно, диммер нужен только для того, чтобы менять яркость, а может, хочется иметь множество режимов.
- Цена. Цены совершенно разные. Лучше всего выбирать не из самых дешевых вариантов, да и фирма-производитель тоже играет не последнюю очередь.
- Какой выбрать тип, тут уже кому как больше нравится. Кто-то хочет управлять с помощью хлопков, а кому-то не лень и пройтись лишний раз.
- Последний и самый важный критерий выбора – совместимость с лампами. Для этого можно либо спросить у работника, либо почитать информацию на коробке.
Вопрос стоимости стоит достаточно остро, ведь подобные включатели стоят на порядок дороже обычных. Давайте рассмотрим все категории:
- Низкая стоимость. 400-1000 рублей. Подобные представители не отличаются большим разнообразием функций. Зачастую это простые приспособления для регулировки яркости света.
- Средняя стоимость. 1000-2000 рублей. Здесь уже можно найти качественные диммеры, которые и режимов много имеют, да и работают хорошо.
- Высокая стоимость. Свыше 2000 рублей. Вариантов найти можно множество, к высокой стоимости зачастую относятся выключатели сенсорные, с управлением голосом и так далее. Если выбирать из таких, то лучше выбрать самую качественную модель, ведь функций много, а значит и ломаться есть чему.
Основные выводы
Плавный розжиг светильников на основе светодиодов популярен в автоподсветке. Кроме того, медленное включение лед-элементов позволяется продлить срок их службы, независимо от места установки. Такое устройство можно купить или изготовить самостоятельно. В последнем случае оно обойдется гораздо дешевле. Для сборки потребуются следующие материалы и инструменты:
- Паяльник с паяльными принадлежностями.
- Основа для платы, например, кусок текстолита.
- Корпус для крепления элементов.
- Резисторы, транзисторы, диоды, конденсаторы и прочие полупроводниковые элементы.
Механизм прибора плавного розжига для светодиодов работает на принципе задерживания, возникающего в цепи «резистор-конденсатор». При этом существуют две основные схемы – простейшая и с возможностью регулировки времени зажигания. Последняя отличается от первой наличием двух резисторов с контролируемым сопротивлением. Чем выше его значение, тем дольше период медленного пуска, и наоборот.
Предыдущая
СветодиодыСветящийся шар своими руками: пошаговая инструкция и необходимые материалы
Следующая
СветодиодыПодсветка шкафа-купе с автоматическим включением: особенности, варианты и монтаж своими руками