Проводники, диэлектрики, полупроводники. разбор по-простому
Содержание:
Виды полупроводников
По характеру проводимости
Собственная проводимость
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
Проводимость связана с подвижностью частиц следующим соотношением:
- σ=1ρ=q(Nnμn+Npμp){\displaystyle \sigma ={\frac {1}{\rho }}=q(N_{\rm {n}}\mu _{\rm {n}}+N_{\rm {p}}\mu _{\rm {p}})}
где ρ{\displaystyle \rho } — удельное сопротивление, μn{\displaystyle \mu _{\rm {n}}} — подвижность электронов, μp{\displaystyle \mu _{\rm {p}}} — подвижность дырок, Nn,p{\displaystyle N_{n,p}} — их концентрация, q — элементарный электрический заряд (1,602·10−19 Кл).
Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:
- σ=1ρ=qN(μn+μp){\displaystyle \sigma ={\frac {1}{\rho }}=qN(\mu _{\rm {n}}+\mu _{\rm {p}})}
Примесная проводимость
Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.
По виду проводимости
Электронные полупроводники (n-типа)
Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.
Проводимость N-полупроводников приблизительно равна:
- σ≈qNnμn{\displaystyle \sigma \approx qN_{\rm {n}}\mu _{\rm {n}}}
Дырочные полупроводники (р-типа)
Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.
Проводимость p-полупроводников приблизительно равна:
- σ≈qNpμp{\displaystyle \sigma \approx qN_{\rm {p}}\mu _{\rm {p}}}
Основные электрофизические свойства
Основные электрофизические свойства важнейших полупроводниковых материалов (ширина запрещённой зоны, подвижность носителей тока, температура плавления и т. д.) представлены в табл. 1. Ширина запрещенной зоны DEg является одним из фундаментальных параметров полупроводниковых материалов. Чем больше DEg, тем выше допустимая рабочая температура и тем более сдвинут в коротковолновую область спектра рабочий диапазон приборов, создаваемых на основе соответствующих полупроводниковых материалов. Например, максимальная рабочая температура германиевых приборов не превышает 50-60 °C, для кремниевых приборов она возрастает до 150—170 °C, а для приборов на основе GaAs достигает 250—300 °C; длинноволновая граница собственной фотопроводимости составляет: для InSb — 5,4 мкм (77 К), InAs — 3,2 мкм (195 К), Ge — 1,8 мкм (300 К), Si — 1 мкм (300 К), GaAs — 0,92 мкм (300 К). Величина DEg хорошо коррелирует с температурой плавления. Обе эти величины возрастают с ростом энергии связи атомов в кристаллической решётке, поэтому для широкозонных полупроводниковых материалов характерны высокие температуры плавления, что создает большие трудности на пути создания чистых и структурно совершенных монокристаллов таких полупроводниковых материалов. Подвижность носителей тока в значительной мере определяет частотные характеристики полупроводниковых приборов. Для создания приборов сверхвысокочастотного диапазона необходимы полупроводниковые материалы, обладающие высокими значениями m. Аналогичное требование предъявляется и к полупроводниковым материалам, используемым для изготовления фотоприемников. Температура плавления и период кристаллической решётки, а также коэффициент линейного термического расширения играют первостепенную роль при конструировании гетероэпитаксиальных композиций. Для создания совершенных гетероструктур желательно использовать полупроводниковые материалы, обладающие одинаковым типом кристаллической решётки и минимальными различиями в величинах её периода и коэффициентах термического расширения. Плотность полупроводниковых материалов определяет такие важные технические характеристики, как удельный расход материала, масса прибора.
Таблица 1. Основные свойства важнейших полупроводниковых материалов.
Элемент, тип соединения | Наименование материала | Ширина запрещенной зоны, эв | Подвижность носителей заряда, 300 K, см2/(в×сек) | Кристаллическая структура | Постоянная решётки, A | Температура плавления, °С | Упругость пара при температуре плавления, атм | ||
---|---|---|---|---|---|---|---|---|---|
при 300 К | при 0 К | электроны | дырки | ||||||
Элемент | С (алмаз) | 5,47 | 5,51 | 2800 | 2100 | алмаз | 3,56679 | 4027 | 10−9 |
Ge | 0,661 | 0,89 | 3900 | 1900 | типа алмаза | 5,65748 | 937 | ||
Si | 1,12 | 1,16 | 1500 | 600 | типа алмаза | 5,43086 | 1420 | 10−6 | |
α-Sn | ~0,08 | типа алмаза | 6,4892 | ||||||
IV—IV | α-SiC | 3 | 3,1 | 400 | 50 | типа сфалерита | 4,358 | 3100 | |
III—V | AISb | 1,63 | 1,75 | 200 | 420 | типа сфалерита | 6,1355 | 1050 | <0,02 |
BP | 6 | типа сфалерита | 4,538 | >1300 | >24 | ||||
GaN | 3,39 | 440 | 200 | типа вюртцита | 3,186 (по оси a) 5,176 (по оси с) | >1700 | >200 | ||
GaSb | 0,726 | 0,80 | 2500 | 680 | типа сфалерита | 6,0955 | 706 | <4·10−4 | |
GaAs | 1,424 | 1,52 | 8500 | 400 | типа сфалерита | 5,6534 | 1239 | 1 | |
GaP | 2,27 | 2,40 | 110 | 75 | типа сфалерита | 5,4505 | 1467 | 35 | |
InSb | 0,17 | 0,26 | 78000 | 750 | типа сфалерита | 6,4788 | 525 | <4·10−5 | |
InAs | 0,354 | 0,46 | 33000 | 460 | типа сфалерита | 6,0585 | 943 | 0,33 | |
InP | 1,34 | 1,34 | 4600 | 150 | типа сфалерита | 5,8688 | 1060 | 25 | |
II—VI | CdS | 2,42 | 2,56 | 300 | 50 | типа вюртцита | 4,16 (по оси a) 6,756 (по оси с) | 1750 | |
CdSe | 1,7 | 1,85 | 800 | типа сфалерита | 6,05 | 1258 | |||
ZnO | 3,36 | 200 | кубич. | 4,58 | 1975 | ||||
ZnS | 3,6 | 3,7 | 165 | типа вюртцита | 3,82 (по оси a) 6,26 (по оси с) | 1700 | |||
IV—VI | PbS | 0,41 | 0,34 | 600 | 700 | кубич. | 5,935 | 1103 | |
PbTe | 0,32 | 0,24 | 1700 | 840 | кубич. | 6,460 | 917 |
Внутренний Полупроводник
Внутренний полупроводник — это самая чистая форма полупроводника, элементная, без каких-либо примесей. Естественно доступные элементы, такие как кремний и германий, являются лучшими примерами внутреннего полупроводника. Давайте узнаем их более подробно.
Структура решетки элементов внутреннего полупроводника
Их также называют алмазоподобными структурами. В таких структурах каждый атом окружен четырьмя соседними атомами. Теперь и Si, и Ge имеют четыре валентных электрона, и в кристаллической структуре каждый атом делит один из своих валентных электронов с каждым из своих четырех соседей.
Кроме того, он берет один электрон от каждого из своих соседей. Эта общая пара электронов называется ковалентной связью или валентной связью. Вот как структура Si или Ge выглядит в двумерном измерении с акцентом на ковалентную связь:
Также на изображении выше показана структура со всеми неповрежденными связями. Это возможно только при низких температурах. Когда температура увеличивается и больше энергии становится доступным для валентных электронов, они разрушаются, что приводит к увеличению проводимости элемента.
Теперь тепловая энергия ионизирует только несколько атомов. Эта ионизация создает вакансию в связи. Когда электрон с зарядом -q возбуждается за счет тепловой энергии, он освобождается от связи. Это оставляет вакансию там с эффективным зарядом + q. Эта вакансия с эффективным положительным электронным зарядом является дырой.
Дырка также ведет себя как свободная частица, но с положительным зарядом. В собственных полупроводниках число свободных электронов равно числу дырок и называется внутренней концентрацией носителей.
Внутренний полупроводник — движение отверстий
Другое интересное свойство полупроводников состоит в том, что, как и электроны, дырки тоже движутся. Рассмотрим следующее изображение:
На изображении выше вы можете видеть, что электрон, будучи возбужденным из-за тепловой энергии, отрывается от связи, генерируя свободный электрон. (Место1) В месте, где электрон высвобождается, создается дырка. Теперь представьте, что электрон из Места 2, как показано на рисунке, прыгает в дыру, созданную в Месте 1. Теперь дыра переместится из Места 1 в Место 2, как показано на рисунке ниже:
Важно отметить, что электрон, освобожденный из Зоны 1, не участвует в движении дыры. Он движется независимо, как электрон проводимости, вносящий вклад в электронный ток (Ie) под воздействием электрического поля. Кроме того, движение дыры на самом деле является движением связанных электронов
Под электрическим полем эти отверстия движутся к отрицательному потенциалу, генерирующему ток отверстия (Ih). Следовательно, общий ток (I) составляет:
I = Ie + Ih
Еще одна важная вещь, которую следует помнить, это то, что помимо процесса генерации свободных электронов и дырок, процесс рекомбинации происходит одновременно. В этом процессе электроны рекомбинируют с дырками. В состоянии равновесия скорость генерации равна скорости рекомбинации.
Методы получения
Свойства полупроводников зависят от способа получения, так как различные примеси в процессе роста могут изменить их. Наиболее дешёвый способ промышленного получения монокристаллического технологического кремния — метод Чохральского. Для очистки технологического кремния используют также метод зонной плавки.
Для получения монокристаллов полупроводников используют различные методы физического и химического осаждения. Наиболее прецизионный и дорогой инструмент в руках технологов для роста монокристаллических плёнок — установки молекулярно-лучевой эпитаксии, позволяющей выращивать кристалл с точностью до монослоя.
Свойства и характеристики полупроводников
Основные электрические свойства полупроводников позволяют рассматривать их, как нечто среднее, между стандартными проводниками и материалами, не проводящими электрический ток. Полупроводниковая группа включает в себя значительно больше разных веществ, чем общее количество .
Широкое распространение в электронике получили полупроводники, изготовленные из кремния, германия, селена и прочих материалов. Их основной характеристикой считается ярко выраженная зависимость от воздействия температуры. При очень низких температурах, сравнимых с абсолютным нулем, полупроводники приобретают свойства изоляторов, а при повышении температуры, их сопротивление уменьшается с одновременным повышением проводимости. Свойства этих материалов могут изменяться и под действием света, когда происходит значительное увеличение фотопроводности.
Полупроводники преобразуют световую энергию в электричество, в отличие от проводников, не обладающих этим свойством. Кроме того, увеличению электропроводности способствует введение в полупроводник атомов определенных элементов. Все эти специфические свойства позволяют использовать полупроводниковые материалы в различных сферах электроники и электротехники.
3.3. Примесные полупроводники
Для большинства полупроводниковых приборов используются примесные полупроводники
Поэтому в практике важное значение имеют такие полупроводниковые материалы, у которых ощутимая концентрация собственных носителей заряда наблюдается при достаточно высокой температуре, т.е. с большой шириной запрещенной зоны
Поставщиками свободных носителей зарядов в рабочем интервале температур в таких ПП являются примеси.
Примесями в простых полупроводниках являются чужеродные атомы. В химических же соединениях это не только чужеродные атомы, но и атомы тех самых элементов, избыточные по стехиометрическому составу. Кроме того, роль примесей играют дефекты кристаллической решетки.
Рассмотрим роль примесей, атомы которых создают дискретные энергетические уровни в запрещенной зоне полупроводника.
3.3.1. Донорные примеси
Если в кристаллическую решетку IV валентного элемента ввести атом элемента с валентностью V, то четыре электрона на его внешней оболочке свяжутся с четырьмя атомами IV валентного элемента, а один электрон становится избыточным, слабосвязанным со своим атомом. Он под вличнием тепловой энергии начнет свободно блуждать по полупроводнику, а под воздействием электрического поля он станет направленно перемещаться (электропроводность типа n ), а атом, отдавший электрон, будет неподвижно находиться в данном месте решетки полупроводника.
Рис. 3.2 Схематическое изображение кристаллической решетки Ge с донорной примесью мышьяка.
С точки зрения энергетических диаграмм донорные примеси образуют заполненные энергетические уровни в запрещенной зоне вблизи дна зоны проводимости. При этом энергия активации примесных атомов меньше ширины запрещенной зоны, поэтому при нагреве тела переброс электронов примеси будет опережать возбуждение электронов решетки.
Рис. 3.3. Энергетическая диаграмма донорного полупроводника.
3.3.2. Акцепторные примеси
Если в решетку IV валентного полупроводника ввести III элемент, например, бор, то он установит три ковалентные связи с атомами германия, для связи с четвертым атомом германия у атома бора нет электрона. Таким образом, у нескольких атомов германия будет по одному электрону без ковалентной связи. Достаточно теперь небольших внешних воздействий, чтобы эти электроны покинули свои места, образовав дырки у атомов германия. Освободившиеся электроны, захваченные атомами бора, не могут создать электрический ток. А дырки у атомов германия позволяют электронам с соседних атомов перейти на них, освобождая другие дырки. Т.о., положительно заряженная дырка будет перемещаться по кристаллу, а под действием поля возникает примесный дырочный ток.
Рис. 3.4. Схематическое изображение кристаллической решетки Ge с акцепторной примесью In.
С точки зрения зонной теории, акцепторная примесь образует незаполненные энергетические уровни в запрещенной зоне вблизи потолка валентной зоны. Тепловое возбуждение будет в первую очередь перебрасывать электроны из валентной зоны на эти энергетические уровни. Ввиду разобщенности атомов примеси, электроны, заброшенные на примесные уровни, не участвуют в образовании электрического тока. Такой полупроводник будет иметь концентрацию дырок, большую концентрации электронов, перешедших из валентной зоны в зону проводимости. И его относят к полупроводнику p-типа.
Рис. 3.5. Энергетическая диаграмма акцепторного полупроводника.
3.3.3. Основные и неосновные носители зарядов
Те носители, концентрация которых в данном полупроводнике больше, носят название основных, а те, которых меньше – неосновных. Так, в полупроводнике n-типа электроны являются основными носителями зарядов, а дырки – неосновными (nn и pn соответственно). Концентрация свободных электронов в зоне проводимости может быть различной. В большинстве случаев используются слаболегированные полупроводники; электроны в этом случае заполняют незначительную часть уровней в зоне проводимости. Такое состояние называют невырожденным. В полупроводнике p-типа основные носители – дырки (pp), а неосновные – электроны (np). Примесная электропроводность для своего появления требует меньших энергетических воздействий (сотые или десятые доли электронвольта), чем собственная, поэтому она обнаруживается при более низкой температуре, чем собственная электропроводность полупроводника. В примесном полупроводнике при данной температуре справедливо соотношение:
p·n = ni2 (3.5)
При нормальной температуре можно считать, что все примеси ионизированы. Тогда, например, в электронном полупроводнике концентрация основных носителей:
nn » Nд, а pn » ni2/Nд
а в дырочном:
pp » Na, a np » ni2/Na.
Электронно-дырочная проводимость.
В «чистом» кристалле полупроводника число высвободившихся в данный момент электронов равно числу образующихся при этом дырок, поэтому электропроводность такого полупроводника мала, так как он оказывает электрическому току большое сопротивление, и такую электропроводность называют собственной.
Но если в полупроводник добавить в виде примеси некоторое количество атомов других элементов, то электропроводность его повысится в разы, и в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной.
Электронная проводимость.
Допустим, в кристалле полупроводника, в котором атомы имеют по четыре валентных электрона, мы заменили один атом атомом, у которого пять валентных электронов. Этот атом своими четырьмя электронами свяжется с четырьмя соседними атомами полупроводника, а пятый валентный электрон останется «лишним» – то есть свободным. И чем больше будет таких атомов в кристалле, тем больше окажется свободных электронов, а значит, такой полупроводник по своим свойствам приблизится к металлу, и чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи.
Полупроводники, обладающие такими свойствами, называют полупроводниками с проводимостью типа «n», или полупроводники n-типа. Здесь латинская буква n происходит от слова «negative» (негатив) — то есть «отрицательный». Отсюда следует, что в полупроводнике n-типа основными носителями заряда являются – электроны, а не основными – дырки.
Дырочная проводимость.
Возьмем все тот же кристалл, но теперь заменим его атом атомом, в котором только три свободных электрона. Своими тремя электронами он свяжется только с тремя соседними атомами, а для связи с четвертым атомом у него не будет хватать одного электрона. В итоге образуется дырка. Естественно, она заполнится любым другим свободным электроном, находящимся поблизости, но, в любом случае, в кристалле такого полупроводника не будет хватать электронов для заполнения дырок. И чем больше будет таких атомов в кристалле, тем больше будет дырок.
Чтобы в таком полупроводнике могли высвобождаться и передвигаться свободные электроны, обязательно должны разрушаться валентные связи между атомами. Но электронов все равно не будет хватать, так как число дырок всегда будет больше числа электронов в любой момент времени.
Такие полупроводники называют полупроводниками с дырочной проводимостью или проводниками p-типа, что в переводе от латинского «positive» означает «положительный». Таким образом, явление электрического тока в кристалле полупроводника p-типа сопровождается непрерывным возникновением и исчезновением положительных зарядов – дырок. А это значит, что в полупроводнике p-типа основными носителями заряда являются дырки, а не основными — электроны.
Теперь, когда Вы имеете некоторое представление о явлениях, происходящих в полупроводниках, Вам не составит труда понять принцип действия полупроводниковых радиокомпонентов.
На этом давайте остановимся, а в следующей части рассмотрим устройство, принцип работы диода, разберем его вольт-амперную характеристику и схемы включения.
Удачи!
1. Борисов В.Г. — Юный радиолюбитель. 1985г.2. Сайт academic.ru: http://dic.academic.ru/dic.nsf/es/45172.
Виды полупроводников
По характеру проводимости
Собственная проводимость
Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок».
Проводимость связана с подвижностью частиц следующим соотношением:
- σ=1ρ=q(Nnμn+Npμp){\displaystyle \sigma ={\frac {1}{\rho }}=q(N_{\rm {n}}\mu _{\rm {n}}+N_{\rm {p}}\mu _{\rm {p}})}
где ρ{\displaystyle \rho } — удельное сопротивление, μn{\displaystyle \mu _{\rm {n}}} — подвижность электронов, μp{\displaystyle \mu _{\rm {p}}} — подвижность дырок, Nn,p{\displaystyle N_{n,p}} — их концентрация, q — элементарный электрический заряд (1,602⋅10−19 Кл).
Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:
- σ=1ρ=qN(μn+μp){\displaystyle \sigma ={\frac {1}{\rho }}=qN(\mu _{\rm {n}}+\mu _{\rm {p}})}
Примесная проводимость
Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.
По виду проводимости
Электронные полупроводники (n-типа)
Термин «n-тип» происходит от слова «negative», обозначающего отрицательный заряд основных носителей. Этот вид полупроводников имеет примесную природу. В четырёхвалентный полупроводник (например, кремний) добавляют примесь пятивалентного полупроводника (например, мышьяка). В процессе взаимодействия каждый атом примеси вступает в ковалентную связь с атомами кремния. Однако для пятого электрона атома мышьяка нет места в насыщенных валентных связях, и он переходит на дальнюю электронную оболочку. Там для отрыва электрона от атома нужно меньшее количество энергии. Электрон отрывается и превращается в свободный. В данном случае перенос заряда осуществляется электроном, а не дыркой, то есть данный вид полупроводников проводит электрический ток подобно металлам. Примеси, которые добавляют в полупроводники, вследствие чего они превращаются в полупроводники n-типа, называются донорными.
Проводимость N-полупроводников приблизительно равна:
- σ≈qNnμn{\displaystyle \sigma \approx qN_{\rm {n}}\mu _{\rm {n}}}
Дырочные полупроводники (р-типа)
Термин «p-тип» происходит от слова «positive», обозначающего положительный заряд основных носителей. Этот вид полупроводников, кроме примесной основы, характеризуется дырочной природой проводимости. В четырёхвалентный полупроводник (например, в кремний) добавляют небольшое количество атомов трехвалентного элемента (например, индия). Каждый атом примеси устанавливает ковалентную связь с тремя соседними атомами кремния. Для установки связи с четвёртым атомом кремния у атома индия нет валентного электрона, поэтому он захватывает валентный электрон из ковалентной связи между соседними атомами кремния и становится отрицательно заряженным ионом, вследствие чего образуется дырка. Примеси, которые добавляют в этом случае, называются акцепторными.
Проводимость p-полупроводников приблизительно равна:
- σ≈qNpμp{\displaystyle \sigma \approx qN_{\rm {p}}\mu _{\rm {p}}}
Классификация
Полупроводниковые диоды, выпускаемые промышленностью, по их назначению можно разделить на следующие основные группы:
- силовые,
- опорные (стабилитроны),
- фотодиоды,
- импульсные,
- высокочастотные,
- параметрические.
Особый интерес представляют туннельные диоды. Маркировку полупроводниковых диодов, производство которых освоено после 1965 г., определяют четыре элемента. Первым элементом обозначения является буква, которая указывает материал используемого полупроводника: Г — германий; К — кремний; А — арсенид галлия. Если первым элементом обозначения является цифра (1 вместо Г, 2 вместо К и 3 вместо А), то это указывает, что приборы могут работать при повышенных температурах (например, приборы с кремниевым основанием, обозначенные цифрой 2, могут работать при температуре до 120°С).
Вторым элементом маркировки является буква, определяющая назначение прибора: А — сверхвысокочастотные диоды; Д — выпрямительные универсальные, импульсные диоды; В — выпрямительные столбы (последовательное соединение ряда диодов); С — стабилитроны; И — туннельные диоды; Ф—фотодиоды и т. д. Третий элемент маркировки (число) характеризует электрические свойства прибора. Выпрямительные низкочастотные диоды обозначаются цифрами от 101 до 399, универсальные — от 401 до 499, импульсные — от 501 до 599, усилительные туннельные диоды —от 101 до 199, генераторные туннельные диоды — от 201 до 299, переключающие туннельные диоды — от 301 до 399, стабилитроны — от 101 до 999.
Четвертый элемент маркировки (буква) определяет разновидность типа прибора из данной группы приборов. Например, 1Д505Б — германиевый импульсный диод, разновидность типа Б, или 3И302Б — арсенид-галлиевый туннельный диод, разновидность типа Б. Полупроводниковые диоды, разработка которых была закончена до 1965 г., обозначаются тремя элементами: первым элементом является буква Д; вторым элементом — число, указывающее диапазоны частот и исходный материал, из которого изготовлен диод; третий элемент определяет разновидность прибора.
Стабилитронами (опорными диодами) называются полупроводниковые диоды предназначенные для стабилизации постоянного напряжения. Для стабилизации напряжения в стабилитронах используют обратную ветвь вольт-амперной характеристики в области электрического пробоя, для этого их включают в обратном направлении. При изменении тока протекающего через стабилитрон от значения Iстmin до Iстmax напряжение на нем почти не изменяется.
Полупроводниковый диод.
Стабилитроны стабилизируют напряжение от 3,5 В, а для стабилизации меньшего напряжения используют стабисторы. В стабисторах используют прямую ветвь вольт-амперной характеристики, поэтому их включают в прямом направлении. Импульсным называется диод, который предназначен для работы в импульсных схемах. В прямом направлении импульсный диод хорошо проводит электрический ток. При обратном включении такого диода, обратный ток в нем резко увеличивается, а через короткий промежуток времени исчезает. Таким образом получается электрический импульс.
Литература
- Тауц Я. Фото- и термоэлектрические явления в полупроводниках. М.: Издательство иностранной литературы, 1962, 256 с.
- Тауц Я. Оптические свойства полупроводников. М.: Мир, 1967, 74 с.
- Киреев П. С. Физика полупроводников. — М., Высшая школа, 1975. — Тираж 30000 экз. — 584 с.
- Горелик С. С., Дашевский В. Я. Материаловедение полупроводников и диэлектриков. — М., Металлургия, 1988. — 574 с.
- Киселев В. Ф. Поверхностные явления в полупроводниках и диэлектриках. — М., Наука, 1970. — Тираж 7800 экз. — 399 с.
- Анатычук Л. И., Булат Л. П. Полупроводники в экстремальных температурных условиях. — СПб., Наука, 2001. — Тираж 1500 экз. — 223 с.