Расчет фильтра для акустической системы программа онлайн. акустические системы
Содержание:
- Визуализация амплитудно-частотной характеристики фильтра
- FAQ по динамикам и сабвуферам
- Фильтр для низкочастотного динамика
- Об искажениях частотных характеристик малогабаритных акустических систем и глубоких басах
- Сборка фильтров
- Расчет и схема фильтра Баттерворта низких частот
- Отличия между активными и пассивными кроссоверами
- Фильтры для динамиков своими руками
- Фазировка динамиков
- Частота среза
Визуализация амплитудно-частотной характеристики фильтра
Наиболее удобным способом оценки влияния фильтра на сигнал является изучение графика его амплитудно-частотной характеристики. На этих графиках, часто называемых графиками Боде, амплитуда (в децибелах) откладывается по вертикальной оси, а частота – по горизонтальной оси; горизонтальная ось обычно имеет логарифмический масштаб, поэтому физическое расстояние между 1 Гц и 10 Гц такое же, как физическое расстояние между 10 Гц и 100 Гц, между 100 Гц и 1 кГц и так далее. Такая конфигурация позволяет нам быстро и точно оценить поведение фильтра в очень широком диапазоне частот.
Рисунок 10 – Пример графика амплитудно-частотной характеристики
Каждая точка на кривой указывает амплитуду, которую будет иметь выходной сигнал, если входной сигнал имеет величину 1 В и частоту, равную соответствующему значению на горизонтальной оси. Например, когда частота входного сигнала равна 1 МГц, амплитуда выходного сигнала (при условии, что амплитуда входного сигнала равна 1 В) будет 0,1 В (поскольку –20 дБ соответствует уменьшению в десять раз).
Общий вид этой кривой амплитудно-частотной характеристики станет вам очень знакомым, если вы будете проводить больше времени со схемами фильтров. Кривая почти идеально плоская в полосе пропускания, а затем, по мере приближения частоты входного сигнала к частоте среза, скорость ее спада начинает увеличиваться. В конечном итоге скорость изменения затухания, называемая спадом, стабилизируется на уровне 20 дБ/декада, то есть уровень выходного сигнала уменьшается на 20 дБ при каждом увеличении частоты входного сигнала в десять раз.
Оценка производительности фильтра нижних частот
Если мы построим амплитудно-частотную характеристику фильтра, который мы разработали ранее в этой статье, то увидим, что амплитудный отклик на 5 кГц, по сути, равен 0 дБ (т.е. почти нулевое затухание), а амплитудный отклик на 500 кГц составляет приблизительно –14 дБ (что соответствует коэффициенту передачи 0,2). Эти значения согласуются с результатами расчетов, которые мы выполнили в предыдущем разделе.
Поскольку RC фильтры всегда имеют плавный переход от полосы пропускания к полосе задерживания, а затухание никогда не достигает бесконечности, мы не можем разработать «идеальный» фильтр, то есть фильтр, который не влияет на необходимый синусоидальный сигнал и полностью устраняет шум. Вместо этого у нас всегда есть компромисс. Если мы сместим частоту среза ближе к 5 кГц, то получим большее затухание шума, но так же и большее затухание полезного синусоидального сигнала, который мы хотим отправить на динамик. Если мы переместим частоту среза ближе к 500 кГц, то получим меньшее затухание на частоте полезного сигнала, но так же и меньшее затухание на частоте шума.
FAQ по динамикам и сабвуферам
В последнее время стало слышно очень много вопросов про динамики и сабвуферы. Подавляющее большинство ответов можно получить на первых трех страницах любой книги, написанной профессионалами. Материал адресован в первую очередь начинающим, ленивым;) и сельским самодельщикам, подготовлен на основе книг И.А. Алдощиной, В.К. Иоффе, отчасти Эфрусси, журнальных публикаций в Wireless World , АМ и (немного) личного опыта . Не использовалась информация из Интернета и ФИДОнета.
Материал никоим образом не претендует на полноту освещения проблемы, а представляет собой попытку объяснить на пальцах азы акустики.
Чаще всего вопрос звучит примерно так: «нашел динамик, что с ним делать?», или «Товарищ, а говорят такие сабвуферы бывают…». Здесь мы рассмотрим только один вариант решения этой проблемы: По имеющемуся динамику сделать ящик, с оптимальными параметрами на HЧ, насколько это возможно. Этот вариант сильно отличается от задачи заводского конструктора-натянуть нижнюю частоту системы до необходимой по ТУ величины
Фильтр для низкочастотного динамика
Фильтр нижних частот из дросселя и конденсатора большой ёмкости называется схемой Баттерворта второго порядка. Он обеспечивает спад частот выше частоты среза до 12 dBна октаву. Схема работает следующим образом. Индуктивность в LC контуре выполняет функцию переменного резистора. Его сопротивление прямо пропорционально частоте ивозрастает с увеличением диапазона. Поэтому высокие частоты практически не попадают на НЧ динамик. Такую же функцию выполняет и конденсатор. Его сопротивление обратно пропорционально частоте и он включается параллельно громкоговорителю.
Поскольку схема устройства должна хорошо пропускать низкие частоты и обрезать высокие, то конденсаторы такого устройства имеют большую ёмкость.Пассивный фильтр для динамика может быть выполнен по более сложной схеме. Если соединить две схемы Баттерворта последовательно, то получится устройство четвёртого порядка из двух индуктивностей и двух конденсаторов. Оно обеспечивает спад частотной характеристики низкочастотного громкоговорителя в 24 децибела на октаву.
Об искажениях частотных характеристик малогабаритных акустических систем и глубоких басах
Каждый радиолюбитель, кто хоть раз самостоятельно строил акустические системы знает, что даже точное исполнение проекта, рекомендаций авторов конструкции не всегда приводят к получению желаемого результата. При всей сложности или просто невозможности оценки качества самодельных акустических систем в домашних условиях, кроме как «на слух», авторы конструкций часто не приводят ни методик оценки своих проектов, ни рекомендаций по их применению (размещению и подключению акустики).
Бывает, что после повторения очередного «шедевра», когда проходит радость от окончания работ над ним, наступает период мучительных оценок и выводов. Энтузиазм и минутная эйфория часто сменяются почти разочарованием. Действительно, сложно уже в готовой конструкции искать причины неудовлетворительной работы, когда делалось «все как надо». А может быть конструкция хорошая, но усилитель «не такой» или другое… Знакомо?
Сборка фильтров
В завершение пару слов про сборку. В фильтре применяются сравнительно большие емкости, 20 мкф, 27 мкф, а места в корпусе и так не много, бумаги или пленки не набрать. Приходится ставить электролиты. И если в фильтре НЧ звучание от их применения пострадает не сильно, а в цобеле их можно и вовсе не услышать, то в фильтре ВЧ звучанием конденсаторов пренебрегать опасно. Именно по этой причини были применены бумажный МБГЧ и пленочный К73-16, а все электролиты зашунтированы бумажными МБГО на 4 мкФ.
Не стоит увлекаться параллеленьем сильно разных конденсаторов. Основной критерий здесь тангенс угла потерь. Если к примеру поставить в шунт к бумажному конденсатору аудиофильский полипропилен, то скорее всего вылезут верха и будут они кислотные. Вероятно тут можно составить аналогию с внутренним сопротивлением, сравнив с ним тангенс угла потерь: чем он меньше, тем больше через конденсатор пройдет сигнала, а поскольку емкость у такого высококачественного конденсатора меньше, то через него пройдет только высокочастотная часть сигнала, отсюда и имеем повышенные уровень верхов. Но это только аналогия, для лучшего понимания влияния шунтов на звук.
Про то как надо разносить катушки и какой толщины применять провода статей написано предостаточно, повторяться здесь не буду. Проще показать картинку (тут неправильно припаян цобель высокочастотника, он должен стоять после резистора).
Расчет и схема фильтра Баттерворта низких частот
Найти порядок активного фильтра Баттерворта нижних частот, чьи характеристики приведены в качестве: A макс = 0,5 дБ на частоте полосы пропускания ( ωp ) 200 радиан / сек (31.8 гЦ), и Amin = -20 дБ на частоте полосы остановки ( ωs ) 800 радиан / сек. Также разработайте подходящую схему фильтра Баттерворта, соответствующую этим требованиям.
Во-первых, максимальное усиление полосы пропускания A max = 0,5 дБ, которое равно усилению 1,0593 , помните, что: 0,5 дБ = 20 * log (A) на частоте ( ωp ) 200 рад / с, поэтому значение эпсилона ε находится по:
Во-вторых, минимальное усиление полосы остановки A min = -20 дБ, которое равно усилению 10 (-20 дБ = 20 * log (A)) на частоте полосы остановки ( ωs ) 800 рад / с или 127,3 Гц.
Подстановка значений в общее уравнение для частотной характеристики фильтров Баттерворта дает нам следующее:
Так как n всегда должно быть целым числом, то следующим самым высоким значением 2,42 будет n = 3 , поэтому «требуется фильтр третьего порядка», и для создания фильтра Баттерворта третьего порядка, ступени фильтра второго порядка требуется каскадное соединение со ступенью фильтра первого порядка.
Из приведенной выше таблицы нормализованных полиномов Баттерворта низких частот коэффициент для фильтра третьего порядка дается как (1 + s) (1 + s + s 2 ), и это дает нам усиление 3-A = 1 или A = 2 . В А = 1 + (Rf / R1) , выбирая значение как для резистора обратной связи Rf и резистора R1 дает нам значения 1 кОм и 1 кОм , соответственно, как: ( 1 кОм / 1 кОм) + 1 = 2 .
Мы знаем, что угловая частота отсечки, точка -3 дБ ( ω o ) может быть найдена с помощью формулы 1 / CR , но нам нужно найти ω o по частоте полосы пропускания ω p ,
Таким образом, частота отсечки угла задается как 284 рад / с или 45,2 Гц (284 / 2π), и, используя знакомую формулу 1 / RC, мы можем найти значения резисторов и конденсаторов для нашей схемы третьего порядка.
Обратите внимание, что ближайшее предпочтительное значение до 0,352 мкФ будет 0,36 мкФ или 360 нФ . И, наконец, наша схема низкочастотного фильтра Баттерворта третьего порядка с угловой частотой среза 284 рад / с или 45,2 Гц, максимальным усилением полосы пропускания 0,5 дБ и минимальным усилением полосы остановки 20 дБ строится следующим образом
И, наконец, наша схема низкочастотного фильтра Баттерворта третьего порядка с угловой частотой среза 284 рад / с или 45,2 Гц, максимальным усилением полосы пропускания 0,5 дБ и минимальным усилением полосы остановки 20 дБ строится следующим образом.
Таким образом, для нашего фильтра низких частот Баттерворта 3-го порядка с угловой частотой 45,2 Гц, C = 360 нФ и R = 10 кОм
Отличия между активными и пассивными кроссоверами
Начнём сравнение с пассивного кросовера. Из практики известно, что пассивный кроссовер является самой распространенной и чаще всего встречающейся на рынке разновидностью. Исходя из названия, можно понять, что пассивным не требуется дополнительное питание. Соответственно, владельцу транспортного средства проще и быстрее установить аппаратуру в своей машине. Но, к сожалению, быстрота не всегда гарантирует качество.
Они редко встречаются в качестве отдельной аппаратуры, но в любом автомобильном усилителе, как составная часть присутствует активный фильтр. Из-за пассивного принципа схемы системе требуется забирать часть энергии из фильтра на обеспечение его работы. При этом реактивным элементам свойственно изменять сдвиг по фазе. Конечно, это не самый серьезный недостаток, но владелец не сможет тонко корректировать частоты.
Избавиться от этого недостатка позволяют активные кроссоверы. Дело в том, что, хотя и устроены они куда сложнее пассивных, но в них поток аудио фильтруется значительно лучше. Благодаря наличию не только катушек и емкостей, но и дополнительных полупроводниковых элементов, разработчикам удалось значительно уменьшить размеры устройства.
Они редко встречаются в качестве отдельной аппаратуры, но в любом автомобильном усилителе, как составная часть присутствует активный фильтр.
Фильтры для динамиков своими руками
Сделать фильтр для динамика совсем не сложно. Он состоит всего из двух элементов – конденсатора и катушки индуктивности. Рассчитать параметры радиоэлементов для пассивной схемы низкой частоты второго порядка проще всего на онлайн калькуляторе. Там можно задать желаемый уровень среза и сопротивление акустической головки. Программа выдаст требуемую ёмкость конденсатора и индуктивность катушки. Например, выбран уровень среза 150 Гц, а сопротивление динамика равно 4 Ом. Калькулятор выдаст следующие значения:
- Ёмкость конденсатора – 187 мкф
- Индуктивность катушки – 6,003 мГн
Требуемую ёмкость можно получить из параллельно соединённых конденсаторов К78-34, которые специально разработаны для работы в акустических системах. Кроме того есть обновлённая линейка конденсаторов аналогичного типа. Это KZKWhiteLine. В качестве недорогих аналогов, радиолюбители часто используют конденсаторы типа МБГО или МБГП.
Катушка индуктивности на 6 мГн наматывается на оправке диаметром 1 см и длиной 6 см. Поскольку катушка не имеет магнитного сердечника в качестве бобины можно использовать цилиндр из любого материала, на который для удобства намотки, нужно сделать щёчки. Для намотки используется медный провод типа ПЭЛ диаметром 1 мм. Длина проволоки 84 метра. Намотку нужно делать виток к витку.
С целью снижения интермодуляционных искажений при звуковоспроизведении громкоговорители Hi-Fi систем составляют из низкочастотных, среднечастотных и высокочастотных динамических головок. Их подключают к выходам усилителей через разделительные фильтры, представляющие собой комбинации LC фильтров нижних и верхних частот.
Ниже приведена методика расчета трехполосного разделительного фильтра по наиболее распространенной схеме.
Частотная характеристика разделительного фильтра трехполосного громкоговорителя в общем виде показана на рис. 1. Здесь: N – относительный уровень напряжения на звуковых катушках головок: fн и fв – нижняя и верхняя граничные частоты воспроизводимой громкоговорителем полосы; fр1 и fр2 – частоты раздела.
В идеальном случае выходная мощность на частотах раздела должна распределяться поровну между двумя головками. Это условие выполняется, если на частоте раздела относительный уровень напряжения, поступающего на соответствующую головку, снижается на 3 дБ по сравнению с уровнем в средней части ее рабочей полосы частот.
Фазировка динамиков
На этом сведение подходит в концу. Остается только определиться с фазировкой динамиков. Тут есть как минимум три способа: на слух, по форме АЧХ и по фазовому сдвигу на частоте раздела. Если у динамиков АЧХ и ФЧХ в меру линейная, и фильтр фазу на разделе сильно не накручивает, то при смене правильной фазы на неправильную на частоте раздела появится глубокий провал, пропустить его сложно. В таком случае стоит подгонять фазу по по ее сдвигу. Сделать это можно осциллографом подавая на горизонтальную развертку сигнал с усилителя, а на вертикальное отклонение с микрофона.
Подают на вход усилителя синус с частотой раздела и не меняя взаимного расположения микрофона и колонки переключают ВЧ и НЧ динамики. По одинаковости фигур Лиссажу делается вывод о равенстве фаз излучателей. Этот метод хорошо подходит для фильтров первого порядка. С кривизной наших динамиков этот метод себя не оправдывает, поэтому сравниваем АЧХ при разной фазировке.
Второй вариант заметно хуже. Однако и первый не предел мечтаний, но так как двигать индуктивности катушек не просто, а ковыряться дальше уже лень, то все было оставлено как есть.
Частота среза
Диапазон частот, для которого фильтр не вызывает значительного ослабления, называется полосой пропускания, а диапазон частот, для которых фильтр вызывает существенное ослабление, называется полосой задерживания. Аналоговые фильтры, такие как RC фильтр нижних частот, переходят из полосы пропускания в полосу задерживания всегда постепенно. Это означает, что невозможно идентифицировать одну частоту, на которой фильтр прекращает пропускать сигналы и начинает их блокировать. Однако инженерам нужен способ, чтобы удобно и кратко охарактеризовать амплитудно-частотную характеристику фильтра, и именно здесь в игру вступает понятие частоты среза.
Когда вы посмотрите на график амплитудно-частотной характеристики RC фильтра, вы заметите, что термин «частота среза» не очень точен. Изображение спектра сигнала, «разрезанного» на две половины, одна из которых сохраняется, а другая отбрасывается, неприменимо, поскольку затухание увеличивается постепенно по мере того, как частоты перемещаются от значений ниже частоты среза к значениям выше частоты среза.
Частота среза RC фильтра нижних частот фактически является частотой, на которой амплитуда входного сигнала уменьшается на 3 дБ (это значение было выбрано, поскольку уменьшение амплитуды на 3 дБ соответствует снижению мощности на 50%). Таким образом, частоту среза также называют частотой -3 дБ, и на самом деле это название является более точным и более информативным. Термин полоса пропускания относится к ширине полосы пропускания фильтра, и в случае фильтра нижних частот полоса пропускания равна частоте -3 дБ (как показано на диаграмме ниже).
Рисунок 8 – Данная диаграмма показывает общие особенности амплитудно-частотной характеристики RC фильтра нижних частот. Ширина полосы пропускания равна частоте -3 дБ.
Как объяснялось выше, пропускающее низкие частоты поведение RC фильтра обусловлено взаимодействием между частотно-независимым импедансом резистора и частотно-зависимым импедансом конденсатора. Чтобы определить подробности амплитудно-частотной характеристики фильтра, нам нужно математически проанализировать взаимосвязь между сопротивлением (R) и емкостью (C); мы также можем манипулировать этими значениями, чтобы разработать фильтр, который соответствует точным спецификациям. Частота среза (fср) RC фильтра нижних частот рассчитывается следующим образом:
\
Давайте посмотрим на простой пример. Значения конденсаторов являются более сдерживающими, чем значения резисторов, поэтому мы начнем с распространенного значения емкости (например, 10 нФ), а затем воспользуемся формулой для определения необходимого значения сопротивления. Цель состоит в том, чтобы разработать фильтр, который будет сохранять аудиосигнал 5 кГц и подавлять шум 500 кГц. Мы попробуем частоту среза 100 кГц, а позже в этой статье мы более тщательно проанализируем влияние этого фильтра на обе частотные составляющие.
\
Таким образом, резистор 160 Ом в сочетании с конденсатором 10 нФ даст нам фильтр, который дает амплитудно-частотную характеристику, близкую к необходимой.