Регулятор мощности на тиристоре

Конструкция и принцип действия

Состоит тиристорный ключ из трех частей:

  • Анод.
  • Катод.
  • Вход.

Последний состоит из трех переходов p-n. При этом переключение переходов производится с очень большой скоростью. Вообще, принцип работы тиристора можно объяснить лучше, если рассмотреть схему связки двух транзисторов, связанных параллельно, как выключатели комплементарно регенеративного действия.


Конструкция тиристора

Итак, самая простейшая схема двух транзисторов, совмещенных так, чтобы при пуске ток коллектора поступал на NPN второго прибора через каналы NPN первого. А в это же время ток проходит обратный путь через первый транзистор на второй. По сути, получается достаточно простая связка, где база-эмиттер одного из транзисторов, в нашем случае второго, получает ток от коллектора-эмиттера другого прибора, то есть, первого.

Цепь постоянного тока

В цепи постоянного тока тиристор работает по принципу подачи импульса положительной полярности, конечно, относительно катода. На длительность перехода из одного состояния в другое оказывает большое воздействие ряд характеристик. А именно:

  • Вид нагрузки (индуктивный, активный и прочее).
  • Скорость нарастания импульса и его амплитуда, имеется в виду ток нагрузки.
  • Величина самой токовой нагрузки.
  • Напряжение в цепи.
  • Температура самого прибора.

Здесь самое важное, чтобы в сети, где установлен данный прибор, не произошло резкое возрастание напряжения. В этом случае может произойти самопроизвольное включение тиристора, а сигнал управления будет в это время отсутствовать

Цепь переменного тока

В этой сети тиристорный ключ работает немного по-другому. Этот прибор дает возможность проводить несколько видов операций. К примеру:

  • Включение и отключение цепи, в которое действует активная или активно-реактивная нагрузки.
  • Можно изменять значение действующей нагрузки и ее средней величины за счет возможности изменять (регулировать) подачу самого сигнала управления.


Тиристор в цепи переменного тока.

Но имейте в виду, что тиристорный ключ может пропускать сигнал только в одном направлении. Поэтому сами тиристоры устанавливаются в цепь, так сказать, во встречно-параллельном включении.

Регулятор мощности

В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.

В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства. Такой регулятор мощности можно применить для управления температурой жала паяльника путем изменения напряжения его питания. Но если потребуется организоваться управления первичными цепями трансформатора, придется включить нагрузку перед диодным мостом. Ток регулирования должен быть не более 7,5 А.

Технические параметры тиристора

Тиристор КУ202Н относится к группе высоковольтных устройств, предназначенных для работы при напряжении до 400 В с максимально допустимым прямым током в открытом состоянии не более 10 А. Всего в линейке имеется 12 моделей тиристоров с различными напряжениями в закрытом состоянии. Поэтому при выборе основным параметром является именно оно.

Для использования в цепях с напряжением от 300 и выше вольт предназначены тиристоры с буквенными обозначениями от К до Н. Что касается остальных параметров, то они остаются теми же. Довольно часто новички радиолюбители сталкиваются с такими проблемами, что приводит к дополнительным растратам.

Эти тиристоры довольно часто применяются в построении регуляторов мощности нагрузкой не более 2 кВт. Но крайне не рекомендуется его эксплуатировать в критических режимах. Следует пропускать через устройство ток не более 7-8 А, что будет обеспечивать наиболее эффективные и щадящие режимы.

Как избежать 3 частых ошибок при работе с симистором

  1. Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
  2. Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
  3. При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.

Режим прямого запирания

Принцип работы тиристора в режиме прямого запирания предполагает обратное смещение одного из переходов. Противоположные слои сдвинуты в прямом направлении. Основная часть приложенного напряжения снижается на единичном переходе. Через остальные слои в соприкасающиеся области инжектируются носители, позволяющие уменьшить сопротивление на проводящем элементе. Происходит увеличение проходящего тока. Падение напряжения уменьшается.

Увеличение прямого напряжения приводит к медленному росту электрического тока. В таком режиме полупроводник считается запертым, что связано с повышенным сопротивлением единичного перехода. При некотором показателе напряжения процесс начинает приобретать лавинообразный характер. Прибор переходит во включенное состояние, в нем устанавливается электрический ток, который зависит от источника и сопротивления цепи.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector