Выпрямительные диоды малой, средней и большой и мощности, справочник

Тиристоры

Данные детали находят широкое применение в приборах для выпрямления и преобразования электротока, сварочных аппаратах, устройствах запуска и контроля скорости работающего на электричестве транспорта, различных радиоэлектронных и коммутационных установках. Применяются они и в конструкциях, предназначенных для компенсации реактивной мощностной нагрузки.

Важно! Низкочастотные тиристоры рассчитаны на эксплуатацию при частоте не более 100 герц. Устройства, отличающиеся повышенным быстродействием, заточены под использование в установках, требующих быстрого нарастания открытого электротока и закрытого напряжения

Тиристорная деталь

Импортные приборы

Отечественная промышленность производит достаточное количество приборов. Однако сегодня наиболее востребованы импортные. Они считаются более качественными.

Импортные устройства широко используются в схемах телевизоров и радиоприемников. Их также применяют для защиты различных приборов при неправильном подключении (неправильная полярность). Количество видов импортных диодов разнообразно. Полноценной альтернативной замены их на отечественные пока не существует.

Выпрямительный диод — это диод на основе полупроводникового материала, который предназначен для того, чтобы преобразовывать переменный ток в постоянный. Правда, этой функцией сфера применения этих радиодеталей не исчерпывается: они применяются для коммутации, в сильноточных схемах, где нет жесткой регламентации временных и частотных параметров электрического сигнала.

Практическое использование выпрямительного диода

В связи с неудержимым развитием научно-технического прогресса применение выпрямителей затронуло все сферы жизнедеятельности человека. Диоды силовые выпрямительные эксплуатируются в таких узлах и механизмах:

  • в блоках питания главных двигателей транспортных средств (наземных, воздушных и водных), промышленных станков и техники, буровых установок;
  • в комплектации диодного моста для сварочных аппаратов;
  • в выпрямительных установках для гальванических ванн, используемых для получения цветных металлов или нанесения защитного покрытия на деталь или изделие;
  • в выпрямительных установках для очистки воды и воздуха, фильтрах различного рода;
  • для передачи электроэнергии на дальние расстояния посредством высоковольтной линии электропередач.

В повседневной жизни выпрямители используют в различных транзисторных схемах. Применяют в основном маломощные устройства как в виде однополупериодного выпрямителя, так и виде диодного моста. Например, диоды выпрямительного блока генератора хорошо известны автолюбителям.

Технология изготовления

Выпрямительный диод по конструкции представляет пластину полупроводникового кристалла, в теле которой имеются две области, имеющие разную проводимость. Это послужило причиной того, что их называют плоскостными.

Полупроводниковые выпрямительные диоды делаются так: на области кристалла полупроводника, имеющей проводимость n-типа, происходит расплавление алюминия, индия или бора, а на область кристалла с проводимостью p-типа расплавляется фосфор.

При воздействии высоких температур эти два вещества накрепко сплавляются с полупроводниковой основой. Кроме того, атомы этих материалов диффундируют внутрь кристалла с образованием в нем области с преимущественно электронной или дырочной проводимостью. В итоге образуется полупроводниковый прибор, имеющий две области с различного типа электропроводностью, а между ними образован p-n-переход. Таков принцип работы подавляющего большинства плоскостных диодов из кремния и германия.

Типы стандартных выпрямителей

Существуют различные силовые выпрямительные полупроводниковые диоды в зависимости от типа монтажа, материала, формы, количества диодов, уровня пропускаемого тока. Самыми распространенными считаются:

  1. Устройства средней силы, которые могут передавать ток силы от 1 до 6 Ампер. При этом технические параметры большинства приборов говорят, что такие диоды могут изменить ток с напряжение до 1,3 килоВольт;
  2. Выпрямительные диоды максимальной серии могут пропускать ток от 10 Ампер до 400, в основном они применяются как сверхбыстрые преобразователи, для контроля промышленной сферы деятельности. Эти устройства называются также высоковольтные;
  3. Низкочастотные диоды или маломощные.

Перед тем, как купить какие либо устройств данного типа, очень важно правильно подобрать основные параметры выпрямительных диодов. К ним относятся: характеристики ВАХ (максимальный обратный ток, максимальный пиковый ток), максимальное обратное напряжение, прямое напряжение, материал корпуса и средняя сила выпрямленного тока. Мы предоставляем таблицу, где Вы сможете в зависимости от своих потребностей, осуществить выбор типа диода

Указанные технические характеристики могут изменяться по требованию производителя, поэтому перед покупкой уточняйте информацию продавца

Мы предоставляем таблицу, где Вы сможете в зависимости от своих потребностей, осуществить выбор типа диода. Указанные технические характеристики могут изменяться по требованию производителя, поэтому перед покупкой уточняйте информацию продавца.

Фото — Таблица низкочастотных диодов

Импортные (зарубежные) выпрямительные диоды (типа КВРС, SMD):

Фото — Таблица импортных диодов

Данные про силовые или высокочастотные диоды:

Фото — Силовые диоды

Выпрямительные схемы включения также бывают разные. Они могут быть однофазными (например, автомобильные и лавинные диоды) или многофазными (трехфазные считаются самыми популярными). Большинство выпрямители малой мощности для отечественного оборудования однофазны, но трехфазный очень важен для промышленного оборудования. Для генератора, трансформатора, станочных приспособлений.

Но при этом, для неконтролируемого мостового трехфазного выпрямителя используются шесть диодов. Поэтому его часто называют шестидиодным выпрямительным прибором. Мосты считаются импульсными и способны нормализовать и выпрямить даже нестабильный ток.

Для маломощных аппаратов (зарядного устройства) двойные диоды, соединенные последовательно с анодом первого диода, также соединены с катодом второго, а изготовлены в едином корпусе. Некоторые имеющиеся в продаже двойные диоды имеют в доступе все четыре терминала, которые можно настроить по своим потребностям.

Фото — Выпрямительный диод средней мощности

Для более высокой мощности одним дискретным устройством обычно используется каждый из шести диодов моста. Его можно применять как для поверхностного оборудования, так и для контроля более сложных приспособлений. Нередко шестидиодные мосты используют ограничительные схемы.

Видео: Принцип работы диодов

Германий или кремний

По применяемым материалам они бывают кремниевые и германиевые, однако более широкое применение нашли кремниевые выпрямительные диоды благодаря своим физическим свойствам.

У них обратные токи в несколько раз меньше, чем в германиевых, в то время как напряжение одинаково. Это дает возможность добиваться в полупроводниках очень высокой величины допустимых обратных напряжений, которые могут составлять до 1000-1500 В. В германиевых диодах этот параметр находится в диапазоне 100-400 В.

Кремниевые диоды способны сохранять работоспособность в диапазоне температур от -60 ºС до +150 ºС, а германиевые — только от -60 ºС до +85 ºС. Это происходит потому, что когда температура становится выше 85 ºС, количество образовавшихся электронно-дырочных пар достигает таких величин, что резко увеличивается обратный ток, и выпрямитель перестает работать эффективно.

Высокочастотный диод

Структурные схемы плоскостного ( а и точечного ( б диодов.

Высокочастотные диоды предназначены для использования в качестве ключевых элементов в импульсных схемах. Для диода состояние включено соответствует прямому смещению р-и-перехода, состояние выключено — обратному. Чем меньше их диффузионная емкость, тем быстрее протекают переходные процессы в диоде, тем меньше время переключения т, тем больше быстродействие. Для уменьшения диффузионной емкости диода необходимо уменьшить время жизни неравновесных носителей, что достигается увеличением удельной проводимости базы диода.

Высокочастотные диоды характеризуются теми же параметрами номинальных и предельных режимов работы, что и выпрямительные диоды. Кроме того, высокочастотные диоды часто характеризуются дифференциальным ( внутренним) сопротивлением и коэффициентом шума. Шумовые свойства диода можно характеризовать величиной эквивалентного омического сопротивления R3KB, мощность тепловых шумов которого равна мощности шума диода.

Структурные схемы плоскостного ( а и точечного ( б диодов.

Высокочастотные диоды предназначены для использования в качестве ключевых элементов в импульсных схемах. Для диода состояние включено соответствует прямому смещению / ьл-перехода, состояние выключено — обратному. Чем меньше их диффузионная емкость, тем быстрее протекают переходные процессы в диоде, тем меньше время переключения т, тем больше быстродействие. Для уменьшения диффузионной емкости диода необходимо уменьшить время жизни неравновесных носителей, что достигается увеличением удельной проводимости базы диода.

Высокочастотные диоды предназначены для работы в различных схемах преобразования элекрических сигналов в диапазоне частот до нескольких сотен мегагерц. Точечные диоды отличаются от плоскостных более сложными процессами, протекающими в них при выпрямлении. В большинстве случаев основой точечных диодов служиг кристалл германия, в который упирается тонкая металлическая игла. Точечный контакт получают путем специальной формовки. Через диод пропускается несколько сравнительно мощных, но-коротких импульсов прямого тока. При этом возникает сильный местный нагрев контакта и происходит сплавление кончика иглы с полупроводником. Процесс формовки сопровождается изменением типа электропроводности части исходного полупроводника, которая примыкает к контакту. В месте контакта иглы и полупроводниковой пластины возникает р-л-переход.

Высокочастотные диоды предназначены для выпрямления и детектирования сигналов в диапазоне частот до 600 Мгц. Они изготавливаются, как правило, из германия или кремния и имеют точечную структуру.

Вольт-амперная характеристика ( а и внешний вид ( б диода.

Высокочастотные диоды применяются для детектирования ( выпрямления токов высокой частоты), модуляции, преобразования частоты, а также в маломощных измерительных схемах.

Высокочастотные диоды применяют для детектирования ( выпрямления токов высокой частоты), модуляции, преобразования частоты, а также в маломощных измерительных схемах.

Высокочастотные диоды являются приборами универсального назначения. Они могут быть использованы для выпрямления токов в широком диапазоне частот ( до сотен МГц), детектирования, модуляции и других нелинейных преобразований электрических сигналов. Свойства высокочастотных диодов характеризуют следующие параметры.

Высокочастотные диоды могут работать в различных схемах преобразования электрических сигналов вплоть до частот порядка нескольких сотен мегагерц. В этой группе диодов в большинстве случаев используется точечный переход. Полупроводниковый диод с точечным переходом обычно называется точечным диодом.

Высокочастотные диоды являются универсальными приборами. Они могут работать в выпрямителях переменного тока широкого диапазона частот ( до нескольких сотен мегагерц и даже до десятков гигагерц), а также в модуляторах, детекторах и других нелинейных преобразователях электрических сигналов.

Германиевые точечные высокочастотные диоды могут иметь обратное напряжение до 350 В и прямой ток до 100 мА при Unp 1 — 2 В. Барьерная емкость точечных германиевых диодов мала ( около 1 пФ), но при СВЧ они применяться не могут из-за эффекта накопления. При частоте выше 150 МГц инжектированные носители заряда за время действия обратного напряжения не успевают ре-комбинировать и уйти из базы.

Высокочастотные диоды ранних разработок содержат точечный р-л-переход ( § 1.3), в связи с чем до настоящего времени за ними сохранилось название точечные.

Где находят применение диоды

Помимо собственно преобразования нестабильного тока в постоянную форму, диоды имеют ряд других вариантов использования. К числу типичных примеров таких компонентов относятся светодиоды, используемые в разных электротехнических приборах, фонарях, телевизорах. Варикапы также применяются в детекторных аппаратах, логарифмических усилителях и иных установках, работающих с нелинейной обработкой аналоговых сигналов. Здесь они выполняют преобразовательную функцию либо формируют некоторый параметр. При встречно-параллельном подключении пары элементов можно сформировать блок ограничения сигнала. С точки зрения функционального наполнения, серьезной разницы между сборкой и единичными диодными компонентами не наблюдается. Вышедший из строя элемент подлежит замене равноценным ему.

Схема, содержащая силовые диоды

Силовые диодные компоненты заточены под трансформацию синусоидального тока в постоянный. Поскольку такая необходимость возникает часто, эти радиодетали используются в широком спектре приборов и схем. Разные варианты исполнения рассчитаны на эксплуатацию при различных показателях силы и частоты тока.

Электрические параметры

У каждого типа диодов есть свои рабочие и предельно допустимые параметры, согласно которым их выбирают для работы в той или иной схеме:

  • Iобр – постоянный обратный ток, мкА;
  • Uпр – постоянное прямое напряжение, В;
  • Iпр max – максимально допустимый прямой ток, А;
  • Uобр max – максимально допустимое обратное напряжение, В;
  • Р max – максимально допустимая мощность, рассеиваемая на диоде;
  • Рабочая частота, кГц;
  • Рабочая температура, С.

Здесь приведены далеко не все параметры диодов, но, как правило, если надо найти замену, то этих параметров хватает.

Схема простого выпрямителя переменного тока на одном диоде

На вход выпрямителя подадим сетевое переменное напряжение, в котором положительные полупериоды выделены красным цветом, а отрицательные – синим. К выходу выпрямителя подключим нагрузку (Rн), а функцию выпрямляющего элемента будет выполнять диод (VD). При положительных полупериодах напряжения, поступающих на анод диода диод открывается. В эти моменты времени через диод, а значит, и через нагрузку (Rн), питающуюся от выпрямителя, течет прямой ток диода Iпр (на правом графике волна полупериода показана красным цветом).

При отрицательных полупериодах напряжения, поступающих на анод диода диод закрывается, и во всей цепи будет протекать незначительный обратный ток диода (Iобр). Здесь, диод как бы отсекает отрицательную полуволну переменного тока (на правом графике такая полуволна показана синей пунктирной линией).

В итоге получается, что через нагрузку (Rн), подключенную к сети через диод (VD), течет уже не переменный, поскольку этот ток протекает только в положительные полупериоды, а пульсирующий ток – ток одного направления. Это и есть выпрямление переменного тока. Но таким напряжением можно питать лишь маломощную нагрузку, питающуюся от сети переменного тока и не предъявляющую к питанию особых требований, например, лампу накаливания.

Напряжение через лампу будет проходить только во время положительных полуволн (импульсов), поэтому лампа будет слабо мерцать с частотой 50 Гц. Однако, за счет тепловой инертности нить не будет успевать остывать в промежутках между импульсами, и поэтому мерцание будет слабо заметным. Если же запитать таким напряжением приемник или усилитель мощности, то в громкоговорителе или колонках мы будем слышать гул низкого тона с частотой 50 Гц, называемый фоном переменного тока. Это будет происходить потому, что пульсирующий ток, проходя через нагрузку, создает в ней пульсирующее напряжение, которое и является источником фона.

Этот недостаток можно частично устранить, если параллельно нагрузке подключить фильтрующий электролитический конденсатор (Cф) большой емкости. Заряжаясь импульсами тока во время положительных полупериодов, конденсатор (Cф) во время отрицательных полупериодов разряжается через нагрузку (Rн). Если конденсатор будет достаточно большой емкости, то за время между импульсами тока он не будет успевать полностью разряжаться, а значит, на нагрузке (Rн) будет непрерывно поддерживаться ток как во время положительных, так и во время отрицательных полупериодов. Ток, поддерживаемый за счет зарядки конденсатора, показан на правом графике сплошной волнистой красной линией.

Силовой выпрямительный диод.

Но и таким, несколько сглаженным током тоже нельзя питать приемник или усилитель потому, что они будут «фонить», так как уровень пульсаций (Uпульс) пока еще очень ощутим. В выпрямителе, с работой которого мы познакомились, полезно используется энергия только половины волн переменного тока, поэтому на нем теряется больше половины входного напряжения и потому такое выпрямление переменного тока называют однополупериодным, а выпрямители – однополупериодными выпрямителями. Эти недостатки устранены в выпрямителях с использованием диодного моста.

Как классифицируются

Справочник по выпрямительным диодам может быть составлен по ряду критериев. Если отталкиваться от наибольшей величины прямого электротока, можно выделить категории деталей с малым значением мощности (предназначены для работы с током до 300 миллиампер), средним (от 300 мА до 10 А) и выпрямительные диоды большой мощности (более 10 А). Мощные диоды с кремниевыми компонентами обладают значительно меньшим значением обратного тока, по сравнению с деталями из германия. Это позволяет добиться больших значений возможного обратного напряжения в полупроводниковых элементах, превышающего 1,5 киловольт (у германиевых изделий оно довольно малое – не более 400 вольт).

Важно! Диоды с кремнием отличаются также значительно лучшей переносимостью высоких температур, сохраняя работоспособность при показателях до 150 градусов Цельсия (для германия максимум составляет 80 градусов). Наименьшая температура эксплуатации для обоих типов изделий – -60 градусов

По особенностям функционирования можно выделить следующие типы диодных устройств:

  1. Импульсные – используются в маломощных электросхемах с соответствующей подачей напряжения. Основными их характеристиками являются наибольший электроток восстановления (это обратный ток, протекающий по устройству следом за переключением), время восстановления (по его прошествии происходит переход в режим обратного напряжения) и время установки (в этот период прямой электроток течет по диоду до того, как установится нужное напряжение).
  2. Обращенные – отличаются тем, что прямое включение показывает значительно большие резистивные свойства, чем обратное. Применяют их с целью выпрямить сигналы с малой амплитудой (менее 100 вольт).
  3. Изделия Шоттки – отличаются малым показателем инерционности. Особенность их устройства такова, что внутри диода не происходит накопления и рассасывания неосновных носителей. Поскольку их полупроводниковый слой имеет небольшую величину сопротивления, при последовательном подключении деталь обладает низкой резистивностью. Варикапы Шоттки хорошо подходят для использования на источниках питания импульсного типа, реализующих выпрямление напряжения с частотой более одного мегагерца. Они могут работать с электротоками большой силы – более 10 ампер.

Диодные компоненты Шоттки

Описание выпрямительных диодов

Выпрямительный электрический диод высокой и средней мощности (СВЧ) – это устройство, которое позволяет электрическому току двигаться только в одном направлении, в основном он используется для работы определенного источника питания. Выпрямительные диоды могут перерабатывать более высокий ток, чем обычные проводники. Как правило, они применяются для преобразования переменного тока в постоянный, частота которого не превышает 20 кгц. Схема их работы имеет следующий вид:

Фото — Принцип работы выпрямительного диода

Многие электрические приборы нуждаются в данных дискретных компонентах из-за того, что они могут выступать в роли интегральных схем. Чаще всего выпрямительные мощные диоды изготавливают из кремния, благодаря чему их поверхность PN-перехода довольно велика. Такой подход обеспечивает отличную передачу тока, при этом гарантируя отсутствие замыканий или перепадов.

Фото — Выпрямительные диодыВыпрямительные диоды

Кремниевые полупроводниковые выпрямители, ламповые термоэлектронные диоды изготавливаются при использовании таких соединений, как оксид меди или селена. С введением полупроводниковой электроники, выпрямители типа вакуумных трубок с металлической основой устарели, но до сих пор их аналоги используются в аудио и теле-аппаратуре. Сейчас для питания аппаратов от очень низкого до очень высокого тока в основном используются полупроводниковые диоды различных типов (быстродействующие блоки, иностранные германиевые приборы, отечественные устройства таблеточного исполнения, диоды Шоттки и т.д.).

Другие устройства, которые оснащены управляющими электродами, где требуется более простой способ ректификации или переменное выходное напряжение (как пример, для сварочных аппаратов) используют более мощные выпрямители. Это могут кремниевые или германиевые приборы. Это тиристоры, стабилитроны или другие контролируемые коммутационные твердотельные переключатели, которые функционируют как диоды, пропуская ток только в одном направлении. Их использует промышленная электроника, также они широко применяются для инженерной электротехники, сварки или контроля работы линий передач тока.

Фото — Выпрямительный диод и катод с анодом

Особенности применения полупроводниковых диодов в схемах

На рисунке приведены четыре типовые схемы применения полупроводниковых диодов. (А) — мостовой выпрямитель, (Б) — Детектор с удвоением напряжения, (В) — источник опорного напряжения. Схема основана на эффекте быстрого нарастания тока в диоде при росте напряжения. Таким образом, при достаточном сопротивлении резистора и правильном выборе рабочей точки диода (достаточно большом токе через него) напряжение на диоде поддерживается стабильным вне зависимости от напряжения питания. (Г) — емкость, регулируемая напряжением. В этой схеме используется внутренняя емкость диода, которая зависит от обратного напряжения на нем. Чем больше запирающее напряжение, тем меньше емкость.

При проектировании силовых электронных схем на полупроводниковых диодах нужно учитывать рассеиваемую тепловую мощность. Тепловая энергия выделяется на диоде в периоды прямой проводимости (статические потери) и в момент закрытия (коммутационные, динамические потери), когда полярность напряжения поменялась с прямой на обратную. При включении диода (появлении прямого напряжения после обратного) происходит некоторая задержка, но ток при этом не течет, и мощность практически не выделяется. В период прямой проводимости [Выделяемая мощность] = [Ток через диод] * [Падение напряжения на диоде в открытом состоянии]. В момент выключения [Пиковая выделяемая мощность закрытия] ~= [Ток через диод] * [Обратное напряжение на диоде] / 2, [Средняя выделяемая мощность закрытия] = [Пиковая выделяемая мощность закрытия] * [Время рассасывания] / [Частота]. На низких частотах преобладают статические потери, на высоких — коммутационные.

Для повышения КПД источников питания необходимо выбирать диоды с минимальным напряжением насыщения (от него зависит падение напряжения на диоде в прямом включении) и минимальным временем рассасывания (для высокочастотных схем). Существуют также специальные схемотехнические решения для снижения потерь. Некоторые из них приведены в других статьях цикла. На одном остановлюсь сейчас.

Последовательно с диодом включается небольшая катушка индуктивности, которая препятствует быстрому изменению тока через диод. В момент переключения, рассасывания в диоде, катушка не дает возникнуть большому обратному току, так как катушка индуктивности вообще за счет накопления энергии в магнитном поле препятствует резкому изменению тока через свои обмотки. Конструктивно такие катушки обычно выполняются так. На один из проводников диода надевается небольшое ферритовое кольцо. Этого вполне достаточно для снижения потерь.

(читать дальше…) :: (в начало статьи)

 1   2   3 

:: ПоискТехника безопасности :: Помощь

 

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!Задать вопрос. Обсуждение статьи.

Еще статьи

Тиристоры. Типы, виды, особенности, применение, классификация. Характе…
Классификация тиристоров. Обозначение на схемах Основные характеристики и важные…

Импульсный источник питания. Своими руками. Самодельный. Сделать. Лабо…
Схема импульсного блока питания. Расчет на разные напряжения и токи….

Силовой мощный импульсный трансформатор, дроссель. Намотка. Изготовить…
Приемы намотки импульсного дросселя / трансформатора….

Практика проектирования электронных схем. Самоучитель электроники….
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы….

Бесперебойник своими руками. ИБП, UPS сделать самому. Синус, синусоида…
Как сделать бесперебойник самому? Чисто синусоидальное напряжение на выходе, при…

Плавная регулировка, изменение яркости свечения светодиодов. Регулятор…
Плавное управление яркостью свечения светодиодов. Схема устройства с питанием ка…

Преобразователь однофазного напряжения в трехфазное. Принцип действия,…
Принцип действия, сборка и наладка преобразователя однофазного напряжения в трех…

Искровой запал, трансформатор розжига, поджига. Запальный блок. Источн…
Как сделать запальный блок с питанием от 12 вольт. Схема, принцип действия, инст…

Силовые полупроводниковые диоды

Данные изделия широко применяются в трансформаторах электрической энергии и разного рода силовых установках. Подключение диода в электроцепь может преследовать множество целей, но первоочередными обычно являются выпрямление тока и предохранение от коммутационных перегрузок. Распространены диоды таблеточной формы, в которых полюсами являются уплощенные основания. Определить «плюс» и «минус» в таких изделиях можно по отметкам на корпусе. Используют их в силовых установках, требующих малой зарядной дозы для восстановления, в высокочастотных условиях (2 килогерца и выше), в статических трансформаторах электрической энергии. Есть и диоды штыревого типа, в них роль катода исполняет вывод, а анода – основание, сделанное из меди. Применяют их чаще в условиях невысокой частоты (менее 500 Гц). Некоторые диоды используют в генераторах автомобилей, тракторов, выпрямительных блоках сварочного оборудования, системах возбуждения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector